LEADER 05503nam 2200709 450 001 9910825191603321 005 20230803195239.0 010 $a1-118-90484-2 010 $a1-118-90492-3 010 $a1-118-90489-3 035 $a(CKB)2670000000523068 035 $a(EBL)1624263 035 $a(SSID)ssj0001110710 035 $a(PQKBManifestationID)11603660 035 $a(PQKBTitleCode)TC0001110710 035 $a(PQKBWorkID)11126087 035 $a(PQKB)10215034 035 $a(MiAaPQ)EBC1624263 035 $a(DLC) 2014005194 035 $a(Au-PeEL)EBL1624263 035 $a(CaPaEBR)ebr10837599 035 $a(CaONFJC)MIL573967 035 $a(OCoLC)870211377 035 $a(EXLCZ)992670000000523068 100 $a20140206h20142014 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aAdvanced energy materials /$fedited by Ashutosh Tiwari and Sergiy Valyukh 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons,$d[2014] 210 4$dİ2014 215 $a1 online resource (616 p.) 225 0 $aAdvanced materials series 300 $aDescription based upon print version of record. 311 $a1-118-68629-2 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright Page; Contents; Preface; 1 Non-imaging Focusing Heliostat; 1.1 Introduction; 1.2 The Principle of Non-imaging Focusing Heliostat (NIFH); 1.2.1 Primary Tracking (Global Movement for Heliostat Frame); 1.2.2 Secondary Tracking (Local Movement for Slave Mirrors); 1.3 Residual Aberration; 1.3.1 Methodology; 1.3.2 Optical Analysis of Residual Aberration; 1.4 Optimization of Flux Distribution Pattern for Wide Range of Incident Angle; 1.5 First Prototype of Non-imaging Focusing Heliostat (NIFH); 1.5.1 Heliostat Structure; 1.5.2 Heliostat Arm; 1.5.3 Pedestal 327 $a1.5.4 Mirror and Unit Frame1.5.5 Hardware and Software Control System; 1.5.6 Optical Alignment of Prototype Heliostat; 1.5.7 High Temperature Solar Furnace System; 1.6 Second Prototype of Non-imaging Focusing Heliostat (NIFH); 1.6.1 Introduction; 1.6.2 Mechanical Design and Control System of Second Prototype; 1.6.3 High Temperature Potato Skin Vaporization Experiment; 1.7 Conclusion; Acknowledgement; References; 2 State-of-the-Art of Nanostructures in Solar Energy Research; 2.1 Introduction; 2.2 Motivations for Solar Energy; 2.2.1 Importance of Solar Energy; 2.2.2 Solar Energy and Its Economy 327 $a2.2.3 Technologies Based on Solar Energy2.2.4 Photovoltaic Systems; 2.3 Nanostructures and Different Synthesis Techniques; 2.3.1 Classification of Nanomaterials; 2.3.2 Synthesis and Processing of Nanomaterials; 2.4 Nanomaterials for Solar Cells Applications; 2.4.1 CdTe, CdSe and CdS Thin-Film PV Devices; 2.4.2 Nanoparticles/Quantum Dot Solar Cells and PV Devices; 2.4.3 Iron Disulfide Pyrite, CuInS2 and Cu2ZnSnS4; 2.4.4 Organic Solar Cells and Nanowire Solar Cells; 2.4.5 Polycrystalline Thin-Film Solar Cells; 2.5 Advanced Nanostructures for Technological Applications 327 $a2.5.1 Nanocones Used as Inexpensive Solar Cells2.5.2 Core/Shell Nanoparticles towards PV Applications; 2.5.3 Silicon PV Devices; 2.5.4 III-V Semiconductors; 2.6 Theory and Future Trends in Solar Cells; 2.6.1 Theoretical Formulation of the Solar Cell; 2.6.2 The Third Generation Solar Cells; 2.7 Conclusion; References; 3 Metal Oxide Semiconductors and Their Nanocomposites Application towards Photovoltaic and Photocatalytic; 3.1 Introduction; 3.2 Metal Oxide Nanostructures for Photovoltaic Applications 327 $a3.3 TiO2Nanomaterials and Nanocomposites for the Application of DSSC and Heterostructure Devices3.3.1 Fabrication of DSSCs with TiO2 Nanorods (NRs) Based Photoanode; 3.3.2 Fabrication of DSSCs with TiO2 Nanocomposite Based Photoanode; 3.3.3 TiO2 Nanocomposite for the Heterostructure Devices; 3.4 ZnO Nanomaterials and Nanocomposites for the Application of DSSC and Heterostructure Devices; 3.4.1 Fabrication of DSSCs with ZnO Nanotubes (NTs) Based Photoanode; 3.4.2 Fabrication of DSSCs with Nanospikes Decorated ZnO Sheets Based Photoanode 327 $a3.4.3 Fabrication of DSSCs with ZnO Nanorods (NRs) and Nanoballs (NBs) Nanomaterial Based Photoanode 330 $aThe role of materials engineering is to provide the much needed support in the development of photovoltaic devices with the new and fundamental researches on novel energy materials with tailor-made photonic properties. Advanced Energy Materials has been designed to provide the state-of-the-art so that scientists can fully be informed of this vast multi-disciplinary approach. A good understanding on the excited state reactivity of photoactive materials helps to prepare new materials and molecules capable of absorbing light over a given wavelength range and using it for driving electron 410 0$aAdvance Materials Series 606 $aRenewable energy sources$xResearch 606 $aEnergy storage$xMaterials 606 $aSolar energy$xMaterials 615 0$aRenewable energy sources$xResearch. 615 0$aEnergy storage$xMaterials. 615 0$aSolar energy$xMaterials. 676 $a621.31028/4 701 $aTiwari$b Ashutosh$f1978-$0738472 701 $aValyukh$b Sergiy$01721596 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910825191603321 996 $aAdvanced energy materials$94121322 997 $aUNINA