LEADER 04016nam 2200661 450 001 9910824900003321 005 20230803021631.0 010 $a1-118-76184-7 010 $a1-118-76201-0 010 $a1-118-76195-2 035 $a(CKB)2550000001115802 035 $a(EBL)1376954 035 $a(OCoLC)861529071 035 $a(SSID)ssj0001036149 035 $a(PQKBManifestationID)11589229 035 $a(PQKBTitleCode)TC0001036149 035 $a(PQKBWorkID)11041825 035 $a(PQKB)10346607 035 $a(MiAaPQ)EBC1376954 035 $a(Au-PeEL)EBL1376954 035 $a(CaPaEBR)ebr10756815 035 $a(CaONFJC)MIL516137 035 $a(EXLCZ)992550000001115802 100 $a20130531d2013 uy| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aLTE-advanced DRX mechanism for power saving /$fScott A. Fowler, Abdelhamid Mellouk, Naomi Yamada 210 1$aHoboken, NJ :$cISTE Ltd/John Wiley and Sons Inc,$d2013. 215 $a1 online resource (120 p.) 225 1 $aFocus networks and telecommunications series,$x2051-2481 300 $aDescription based upon print version of record. 311 $a1-84821-532-0 311 $a1-299-84886-9 320 $aIncludes bibliographical references and index. 327 $a""Cover ""; ""Title Page ""; ""Contents ""; ""Preface ""; ""Introduction ""; ""Chapter 1. Basic Theory""; ""1.1. LTE overview""; ""1.2. Scheduling in LTE""; ""1.2.1. Quality of Service parameters""; ""1.2.2. Channel quality indicator""; ""1.2.3. Buffer state and resource allocation history""; ""1.3. LTE Traffic measurements"" 327 $a""1.3.1. Testing environment""1.3.2. VoIP preliminary capacity""; ""1.3.3. Video conversation preliminary capacity""; ""1.3.4. Post video and live video preliminary capacity""; ""1.3.5. Summary on the LTE Traffic measurements""; ""1.4. User equipment power saving in LTE"" 327 $a""1.4.1. DRX cycle""""1.5. Models for LTE Power Saving""; ""1.5.1. 3GPP power consumption model""; ""1.5.2. Characteristics of NokiaTM power consumption model""; ""1.6. Conclusion"; ""1.7. Bibliography""; ""Chapter 2. Analytical Semi-Markov Power-Saving Models"" 327 $a""2.1. Introduction of bursty packet data traffic""""2.2. Designing a simple Two-state DRX model using semi-Markov""; ""2.2.1. State 1 to state 1 and state 1 to state 2 ""2.2.2. Transition probability matrix""; ""2.2.3. How we obtain equation [2.4]"; ""2.2.4. Holding states"" 327 $a""2.2.5. State H1""""2.2.6. Sleep states H2""; ""2.2.7. DRX cycles in basic 3GPP LTE""; ""2.2.8. Wake-up delay ""; ""2.2.9. Power-saving factor (PS) ""2.2.10. Numerical results""; ""2.3. Three-state fixed model""; ""2.3.1. State 1 to state 1 and state 1 to state 2"" 327 $a""2.3.2. State 2 to state 1 and state 2 to state 3"" 330 $aResource allocation and power optimization is a new challenge in multimedia services in cellular communication systems. To provide a better end-user experience, the fourth generation (4G) standard Long Term Evolution/Long Term Evolution-Advanced (LTE/LTE-Advanced) has been developed for high-bandwidth mobile access to accommodate today's data-heavy applications. LTE/LTE-Advanced has adopted discontinuous reception (DRX) to extend the user equipment's battery lifetime, thereby further supporting various services and large amounts of data transmissions. By introducing the basics of mathematical 410 0$aFocus series in networks and telecommunications. 606 $aLong-Term Evolution (Telecommunications) 615 0$aLong-Term Evolution (Telecommunications) 676 $a520 700 $aFowler$b Scott A$01708232 701 $aMellouk$b Abdelhamid$01646604 701 $aYamada$b Naomi$01708233 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910824900003321 996 $aLTE-advanced DRX mechanism for power saving$94097112 997 $aUNINA