LEADER 03064nam 2200589 450 001 9910480644103321 005 20180613001308.0 010 $a1-4704-0497-4 035 $a(CKB)3360000000465075 035 $a(EBL)3114158 035 $a(SSID)ssj0000889088 035 $a(PQKBManifestationID)11452880 035 $a(PQKBTitleCode)TC0000889088 035 $a(PQKBWorkID)10866182 035 $a(PQKB)10657961 035 $a(MiAaPQ)EBC3114158 035 $a(PPN)195417801 035 $a(EXLCZ)993360000000465075 100 $a20070912h20082008 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNewton's method applied to two quadratic equations in C[superscript 2] viewed as a global dynamical system /$fJohn H. Hubbard, Peter Papadopol 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2008] 210 4$dİ2008 215 $a1 online resource (160 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 891 300 $aDescription based upon print version of record. 311 $a0-8218-4056-8 320 $aIncludes bibliographical references. 327 $a""Table of Contents""; ""Chapter 0 Introduction""; ""1. Introduction""; ""2. Outline of paper""; ""3. Acknowledgements""; ""4. A computer tour of Newton's method""; ""5. Some open questions""; ""Chapter 1 Fundamental properties of Newton maps""; ""1.1. Generalities about Newton's method""; ""1.2. The intersection of graphs""; ""1.3. The Russakovskii-Shiffman measure""; ""1.4. Invariant currents""; ""1.5. The intersection of conies""; ""1.6. Degenerate cases""; ""1.7. The one-variable rational functions associated to the roots"" 327 $a""Chapter 2 Invariant 3-manifolds associated to invariant circles""""2.1. The circles in the invariant lines""; ""2.2. Periodic cycles on invariant circles""; ""2.3. Unstable manifolds at infinity""; ""2.4. The invariant manifolds of circles""; ""2.5. The extension of I?? and the origin of ""bubbles""""; ""Chapter 3 The behavior at infinity when a = b = 0""; ""3.1. The primitive space""; ""3.2. Newton's method and the primitive space""; ""Chapter 4 The Farey blow-up""; ""4.1. Definition of the Farey blow-up""; ""4.2. Naturality of the Farey blow-up"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 891. 606 $aNewton-Raphson method 606 $aEquations, Quadratic 606 $aDifferentiable dynamical systems 608 $aElectronic books. 615 0$aNewton-Raphson method. 615 0$aEquations, Quadratic. 615 0$aDifferentiable dynamical systems. 676 $a515/.39 700 $aHubbard$b John H$g(John Hamal),$f1945 or 1946-$021456 702 $aPapadopol$b Peter$f1931- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480644103321 996 $aNewton's method applied to two quadratic equations in C viewed as a global dynamical system$92182589 997 $aUNINA LEADER 01806nam 2200457 450 001 9910824619603321 005 20230630043440.0 010 $a1-78969-851-0 035 $a(CKB)4100000011777425 035 $a(MiAaPQ)EBC6486721 035 $a(Au-PeEL)EBL6486721 035 $a(OCoLC)1239989940 035 $a(EXLCZ)994100000011777425 100 $a20230630d2021 uy 0 101 0 $aspa 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 13$aLa Transformacio?n Del Mundo Rural en la Isla de Mallorca Durante la Antigu?edad Tardi?a (C. 300-902/903 D. C. ) /$fCatalina Mas Florit 210 1$aOxford :$cArchaeopress,$d[2021] 210 4$dİ2021 215 $a1 online resource (139 pages) 225 1 $aLimina/Limites ;$v7 311 $a1-78969-850-2 320 $aIncludes bibliographical references and index. 330 $aThe latest entry in the 'Limina/Limites: Archaeologies, histories, islands and borders in the Mediterranean' series presents the study of the rural landscape of the eastern part of the island of Mallorca (Balearic Islands) during Late Antiquity, providing new data that improves our understanding of one of the least well-known periods of the island. 410 0$aBAR international series.$pLimina/Limites ;$v7. 606 $aAntiquities 606 $aExcavations (Archaeology) 615 0$aAntiquities. 615 0$aExcavations (Archaeology) 676 $a930 700 $aMas Florit$b Catalina$0199712 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910824619603321 996 $aLa Transformacio?n Del Mundo Rural en la Isla de Mallorca Durante la Antigu?edad Tardi?a (C. 300-902$94128022 997 $aUNINA