LEADER 03237nam 22006972 450 001 9910824549403321 005 20160318120116.0 010 $a1-139-61118-6 010 $a1-107-23793-9 010 $a1-139-60936-X 010 $a1-139-61304-9 010 $a1-139-61676-5 010 $a1-139-42440-8 010 $a1-139-62606-X 010 $a1-283-87069-X 010 $a1-139-62234-X 035 $a(CKB)2550000000709574 035 $a(EBL)1099947 035 $a(OCoLC)828302639 035 $a(SSID)ssj0000783337 035 $a(PQKBManifestationID)11435678 035 $a(PQKBTitleCode)TC0000783337 035 $a(PQKBWorkID)10771206 035 $a(PQKB)11196160 035 $a(UkCbUP)CR9781139424400 035 $a(MiAaPQ)EBC1099947 035 $a(Au-PeEL)EBL1099947 035 $a(CaPaEBR)ebr10634035 035 $a(CaONFJC)MIL418319 035 $a(PPN)261276646 035 $a(EXLCZ)992550000000709574 100 $a20120424d2013|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGeneralized vectorization, cross-products, and matrix calculus /$fDarrell A. Turkington 205 $a1st ed. 210 1$aCambridge :$cCambridge University Press,$d2013. 215 $a1 online resource (xi, 267 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 24 Feb 2016). 311 $a1-107-44872-7 311 $a1-107-03200-8 320 $aIncludes bibliographical references and index. 327 $a1. Mathematical prerequisites -- 2. Zero-one matrices -- 3. Elimination and duplication matrices -- 4. Matrix calculus -- 5. New matrix calculus results -- 6. Applications. 330 $aThis book presents the reader with new operators and matrices that arise in the area of matrix calculus. The properties of these mathematical concepts are investigated and linked with zero-one matrices such as the commutation matrix. Elimination and duplication matrices are revisited and partitioned into submatrices. Studying the properties of these submatrices facilitates achieving new results for the original matrices themselves. Different concepts of matrix derivatives are presented and transformation principles linking these concepts are obtained. One of these concepts is used to derive new matrix calculus results, some involving the new operators and others the derivatives of the operators themselves. The last chapter contains applications of matrix calculus, including optimization, differentiation of log-likelihood functions, iterative interpretations of maximum likelihood estimators and a Lagrangian multiplier test for endogeneity. 517 3 $aGeneralized Vectorization, Cross-Products, & Matrix Calculus 606 $aMatrices 606 $aVector analysis 615 0$aMatrices. 615 0$aVector analysis. 676 $a515/.63 686 $aBUS021000$2bisacsh 700 $aTurkington$b Darrell A.$0266648 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910824549403321 996 $aGeneralized vectorization, cross-products, and matrix calculus$94008611 997 $aUNINA