LEADER 01336nam0-2200397---450- 001 990000348820203316 005 20100114123349.0 010 $a88-348-0526-7 035 $a0034882 035 $aUSA010034882 035 $a(ALEPH)000034882USA01 035 $a0034882 100 $a20010306d2000----km-y0itay0103----ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $aStrumenti per il controllo di gestione delle aziende ospedaliere$fFrancesca Maria Cesaroni 210 $aTorino$cG. Giappichelli$dcopyr. 2000 215 $aVI, 223 p.$d24 cm 225 2 $aStudi e ricerche di economia aziendale$v10 410 0$12001$aStudi e ricerche di economia aziendale 606 0 $aOspedali$xGestione 676 $a657.83203 700 1$aCESARONI,$bFrancesca Maria$0116713 801 0$aIT$bsalbc$gISBD 912 $a990000348820203316 951 $aXXX.B. Coll. 103/ 13 (COLL. HTH 10)$b8864 E.C.$cXXX.B. Coll. 103/ 13 (COLL. HTH)$d00071247 959 $aBK 969 $aECO 979 $aTAMI$b40$c20010306$lUSA01$h1037 979 $aTAMI$b40$c20010306$lUSA01$h1037 979 $c20020403$lUSA01$h1643 979 $aPATRY$b90$c20040406$lUSA01$h1624 979 $aRSIAV3$b90$c20100114$lUSA01$h1233 996 $aStrumenti per il controllo di gestione delle aziende ospedaliere$9878574 997 $aUNISA LEADER 05616nam 2200745Ia 450 001 9910824461203321 005 20200520144314.0 010 $a9786612123221 010 $a9781282123229 010 $a128212322X 010 $a9780470740538 010 $a0470740531 010 $a9780470740545 010 $a047074054X 035 $a(CKB)1000000000748754 035 $a(EBL)437418 035 $a(OCoLC)427565663 035 $a(SSID)ssj0000239023 035 $a(PQKBManifestationID)11175361 035 $a(PQKBTitleCode)TC0000239023 035 $a(PQKBWorkID)10238829 035 $a(PQKB)11709323 035 $a(MiAaPQ)EBC437418 035 $a(Au-PeEL)EBL437418 035 $a(CaPaEBR)ebr10307342 035 $a(CaONFJC)MIL212322 035 $a(Perlego)2774259 035 $a(EXLCZ)991000000000748754 100 $a20090227d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aRobust methods in biostatistics /$fStephane Heritier ... [et al.] 205 $a1st ed. 210 $aChichester, West Sussex ;$aHoboken $cJ. Wiley$d2009 215 $a1 online resource (294 p.) 225 1 $aWiley Series in Probability and Statistics ;$vv.825 300 $aDescription based upon print version of record. 311 08$a9780470027264 311 08$a0470027266 320 $aIncludes bibliographical references and index. 327 $aRobust Methods in Biostatistics; Contents; Preface; Acknowledgments; 1 Introduction; What is Robust Statistics?; Against What is Robust Statistics Robust?; Are Diagnostic Methods an Alternative to Robust Statistics? .; How do Robust Statistics Compare with Other Statistical Procedures in Practice?; 2 Key Measures and Results; Introduction; Statistical Tools for Measuring Robustness Properties; The Influence Function; The Breakdown Point; Geometrical Interpretation; The Rejection Point; General Approaches for Robust Estimation; The General Class of M-estimators; Properties of M-estimators 327 $aThe Class of S-estimatorsStatistical Tools for Measuring Tests Robustness; Sensitivity of the Two-sample t-test; Local Stability of a Test: the Univariate Case; Global Reliability of a Test: the Breakdown Functions; General Approaches for Robust Testing; Wald Test, Score Test and LRT; Geometrical Interpretation; General -type Classes of Tests; Asymptotic Distributions; Robustness Properties; 3 Linear Regression; Introduction; Estimating the Regression Parameters; The Regression Model; Robustness Properties of the LS and MLE Estimators; Glomerular Filtration Rate (GFR) Data Example 327 $aRobust EstimatorsGFR Data Example (continued); Testing the Regression Parameters; Significance Testing; Diabetes Data Example; Multiple Hypothesis Testing; Diabetes Data Example (continued); Checking and Selecting the Model; Residual Analysis; GFR Data Example (continued); Diabetes Data Example (continued); Coefficient of Determination; Global Criteria for Model Comparison; Diabetes Data Example (continued); Cardiovascular Risk Factors Data Example; 4 Mixed Linear Models; Introduction; The MLM; The MLM Formulation; Skin Resistance Data; Semantic Priming Data; Orthodontic Growth Data 327 $aClassical Estimation and InferenceMarginal and REML Estimation; Classical Inference; Lack of Robustness of Classical Procedures; Robust Estimation; Bounded Influence Estimators; S-estimators; MM-estimators; Choosing the Tuning Constants; Skin Resistance Data (continued); Robust Inference; Testing Contrasts; Multiple Hypothesis Testing of the Main Effects; Skin Resistance Data Example (continued); Semantic Priming Data Example (continued); Testing the Variance Components; Checking the Model; Detecting Outlying and Influential Observations; Prediction and Residual Analysis; Further Examples 327 $aMetallic Oxide DataOrthodontic Growth Data (continued); Discussion and Extensions; 5 Generalized Linear Models; Introduction; The GLM; Model Building; Classical Estimation and Inference for GLM; Hospital Costs Data Example; Residual Analysis; A Class of M-estimators for GLMs; Choice of ? and w(x); Fisher Consistency Correction; Nuisance Parameters Estimation; IF and Asymptotic Properties; Hospital Costs Example (continued); Robust Inference; Significance Testing and CIs; General Parametric Hypothesis Testing and Variable Selection; Hospital Costs Data Example (continued) 327 $aBreastfeeding Data Example 330 $aRobust statistics is an extension of classical statistics that specifically takes into account the concept that the underlying models used to describe data are only approximate. Its basic philosophy is to produce statistical procedures which are stable when the data do not exactly match the postulated models as it is the case for example with outliers. Robust Methods in Biostatistics proposes robust alternatives to common methods used in statistics in general and in biostatistics in particular and illustrates their use on many biomedical datasets. The methods introduced include robust 410 0$aWiley Series in Probability and Statistics 606 $aBiometry$xStatistical methods 606 $aBiomathematics 615 0$aBiometry$xStatistical methods. 615 0$aBiomathematics. 676 $a570.1/5195 676 $a570.15195 701 $aHeritier$b Stephane$0432026 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910824461203321 996 $aRobust methods in biostatistics$93927291 997 $aUNINA