LEADER 02391nam a2200493 i 4500 001 991003350469707536 008 170328s2016 de b 001 0 eng d 020 $a9783110372786$q(v. 1 :$qalk. paper) 020 $a9783110411492$q(v. 2) 035 $ab14320587-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a512.4$223 084 $aAMS 16-02 084 $aAMS 20-02 084 $aAMS 16U60 084 $aAMS 16S34 084 $aAMS 20C05 084 $aAMS 16H10 084 $aLC QA251.35.J47 100 1 $aJespers, Eric$061542 245 10$aGroup ring groups /$cby Eric Jespers, Ángel del Río 264 1$aBerlin ;$aBoston :$bDe Gruyter,$cc2016 300 $a2 v. :$bill. ;$c24 cm 336 $atext$btxt$2rdacontent 337 $aunmediated$bn$2rdamedia 338 $avolume$bnc$2rdacarrier 490 1 $aDe Gruyter graduate 500 $aThis two-volume graduate textbook gives a comprehensive, state-of-the-art account of describing large subgroups of the unit group of the integral group ring of a finite group and, more generally, of the unit group of an order in a finite dimensional semisimple rational algebra. Supporting problems illustrate the results and complete some of the proofs. Volume 1 contains all details on describing generic constructions of units and their subgroups. Volume 2 mainly is about structure theorems and geometric methods 504 $aIncludes bibliographical references and index 505 0 $gVol. 1:$tOrders and generic constructions of units 505 0 $gVol. 2:$tStructure theorems of unit groups 650 0$aGroup rings$vTextbooks 650 0$aAlgebra and number theory 650 0$aUnit groups (Ring theory)$vTextbooks 650 0$aRings (Algebra)$vTextbooks 700 1 $aRío, Ángel del$eauthor$4http://id.loc.gov/vocabulary/relators/aut$0132108 830 0$aDe Gruyter graduate 907 $a.b14320587$b05-06-17$c28-03-17 912 $a991003350469707536 945 $aLE013 16-XX JES12 V.I (2016)$cV. 1$g1$i2013000294681$lle013$op$pE59.96$q-$rl$s- $t0$u0$v0$w0$x0$y.i15809365$z05-06-17 945 $aLE013 16-XX JES12 V.II (2016)$cV. 2$g1$i2013000294698$lle013$op$pE39.96$q-$rl$s- $t0$u0$v0$w0$x0$y.i15809377$z05-06-17 996 $aGroup ring groups$91520423 997 $aUNISALENTO 998 $ale013$b28-03-17$cm$da $e-$feng$gde $h0$i0 LEADER 01539nam 2200469 450 001 9910823959903321 005 20170330082505.0 010 $a1-4704-2948-9 035 $a(CKB)3860000000041534 035 $a(MiAaPQ)EBC4901866 035 $a(RPAM)19059095 035 $a(PPN)194494551 035 $a(EXLCZ)993860000000041534 100 $a20160418h20162016 uy| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 14$aThe local structure for finite groups with a large p-subgroup /$fU. Meierfrankenfeld, B. Stellmacher, G. Stroth 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2016] 210 4$d©2016 215 $a1 online resource (356 pages) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vvolume 242, number 1147 311 $a1-4704-1877-0 320 $aIncludes bibliographical references. 410 0$aMemoirs of the American Mathematical Society ;$vv. 242, no. 1147. 606 $aFinite groups 606 $aGroup theory 615 0$aFinite groups. 615 0$aGroup theory. 676 $a512/.23 700 $aMeierfrankenfeld$b U$g(Ulrich),$f1962-$01647905 702 $aStellmacher$b B$g(Bernd), 702 $aStroth$b Gernot$f1949- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910823959903321 996 $aThe local structure for finite groups with a large p-subgroup$93995734 997 $aUNINA