LEADER 08150nam 2200577 a 450 001 9910823626603321 005 20240410171420.0 010 $a1-61668-517-4 035 $a(CKB)2560000000068609 035 $a(EBL)3019968 035 $a(SSID)ssj0000422189 035 $a(PQKBManifestationID)12152469 035 $a(PQKBTitleCode)TC0000422189 035 $a(PQKBWorkID)10416585 035 $a(PQKB)11316865 035 $a(MiAaPQ)EBC3019968 035 $a(Au-PeEL)EBL3019968 035 $a(CaPaEBR)ebr10674976 035 $a(OCoLC)923662354 035 $a(EXLCZ)992560000000068609 100 $a20091230d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aLithium batteries$b[electronic resource] $eresearch, technology and applications /$fGreger R. Dahlin and Kalle E. Strom, editors 205 $a1st ed. 210 $aNew York $cNova Science Publishers$dc2010 215 $a1 online resource (240 p.) 225 1 $aElectrical engineering developments 300 $aDescription based upon print version of record. 311 $a1-60741-722-7 320 $aIncludes bibliographical references and index. 327 $aIntro -- LITHIUM BATTERIES: RESEARCH, TECHNOLOGY AND APPLICATIONS -- LITHIUM BATTERIES: RESEARCH, TECHNOLOGY AND APPLICATIONS -- CONTENTS -- PREFACE -- Chapter 1 LIFEPO4 CATHODE MATERIALS FOR LITHIUM-ION BATTERIES -- 1. INTRODUCTION -- 2. SYNTHESIS METHOD OF LIFEPO4 CATHODE MATERIALS -- 2.1. Solid-State Reaction -- 2.2. Hydrothermal Method -- 2.3. Co-Precipitation -- 2.4. Emulsion-Drying Method -- 2.5. Sol-Gel Method -- 2.6. Mechanical Alloying -- 2.7. Microwave Processing -- 2.8. Other Synthesis Methods -- 3. HOW TO IMPROVE ELECTROCHEMICAL PERFORMANCE OF LIFEPO4 CATHODE MATERIALS -- 3.1. Effect of Particle Size and Morphology on Electrochemical Performance of LiFePO4 -- 3.2. Substitution of Li+ or Fe2+ with Cations -- 3.3. Effect of Carbon Coating and Metal or Metal Oxide Mixing on Charge/Discharge Performance of LiFePO4 -- 4. SUMMARY AND FUTURE PROSPECT -- 5. ACKNOWLEDGMENTS -- REFERENCES -- Chapter 2 INORGANIC CATHODE MATERIALS FOR LITHIUM ION BATTERIES -- 1. INTRODUCTION -- 2. LAYERED LITHIUM METAL OXIDES -- 2.1 Introduction -- 2.2 LiNiO2 -- 2.2.1 Problems with LiNiO2 -- 2.2.2 Synthesis of stoichiometric LiNiO2-based materials -- 2.2.3 Structural stability of delithiated LiNiO2-based materials -- 2.2.4 Thermal stability of delithiated LiNiO2-based materials -- 2.3 LiMnO2 -- 2.3.1 Challenges of LiMnO2 -- 2.3.2 Development of monoclinic LiMnO2 cathode materials -- 2.3.3 Development of orthorhombic LiMnO2 cathode materials -- 2.4 Mixed Transition Metal Dioxides -- 3 SPINEL LITHIUM MANGANESE OXIDES -- 3.1 Introduction -- 3.2 LiMn2O4 -- 3.2.1 Problems with LiMn2O4 -- 3.2.2 Modification of LiMn2O4 -- 4 OLIVINE LITHIUM METAL PHOSPHATES -- 4.1 Introduction -- 4.2 LiFePO4 -- 4.2.1 Problems with LiFePO4 -- 4.2.2 Synthesis methods for LiFePO4 -- 4.2.3 Electrochemical performance upgrading of LiFePO4 -- 4.3 LiMPO4 (M = Mn, Co, Ni) -- 5 CONCLUSION. 327 $aREFERENCES -- Chapter 3 ANALYSIS OF CELL IMPEDANCE FOR THE DESIGNOF A HIGH-POWER LITHIUM-ION BATTERY -- ABSTRACT -- I. INTRODUCTION -- II. OVERVIEW OF HIGH POWER CELL DESIGN -- III. TIME-DEPENDENT CONTRIBUTION OF REACTION STEPS TO TOTAL POLARIZATION -- 1. Overview of the Approach -- 2. Model Case: Analysis on Hypothetical Electrode in LIB -- IV. IN-DEPTH DIAGNOSIS OF THE BATTERY WITH DEGRADED POWER -- 1. Cell Configuration and Electrochemical Test Procedures -- 2. Analysis Based on a Two-Electrode Electrochemical Cell and its Limitation -- 3. Analysis Based on a Three-Electrode Electrochemical Cell -- V. CRITICAL FACTORS FOR LOW-TEMPERATURE POWER DECLINE -- 1. Brief Description of Electrochemical Test Procedures -- 2. Effect of Temperature on Total and Elementary Polarizations -- 3. Power Performance of Hybrid Electrodes -- VI. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 4 CHEMICAL OVERCHARGE PROTECTION OF LITHIUM-ION CELLS -- ABSTRACT -- INTRODUCTION -- COMPARISON OF AVAILABLE TECHNOLOGIES -- HISTORICAL REVIEW -- STABILITY OF REDOX SHUTTLES -- Electronic Stability -- Structural Stability -- EXAMPLES OF STABLE REDOX SHUTTLES -- Aromatic Redox Shuttles -- Non-Aromatic Redox Shuttles -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- Chapter 5 THERMAL STABILITY AND ELECTROCHEMICAL PERFORMANCE OF LICOO2 AND LICO0.2NI0.8O2 IN LITHIUM-ION BATTERIES -- ABSTRACT -- 1. INTRODUCTION -- 2. MEASUREMENT OF THERMAL STABILITY -- 2.1. Differential Scanning Calorimetry -- 2.2. Accelerating Rate Calorimetry -- 3. HAZARD TRIGGERS -- 3.1. Temperature Coefficient of Cell Voltage -- 3.2. Cell Design -- 3.3. Electrolyte -- 3.4. Active Materials -- 4. LICOO2 -- 4.1. Coated LiCoO2 Cathodes -- 5. LICO0.2NI0.8O2 -- 5.1. Substituted LiNiyCo1-yO2 Compositions -- 5.2. Coated LiNiyCo1-yO2 Compositions -- 6. CONCLUSIONS -- REFERENCES. 327 $aChapter 6 COMPOSITIONAL AND STRUCTURAL EVOLUTION OF CATHODE PARTICLES OF THE CYCLED LITHIUM BATTERIES INVESTIGATED BY ANALYTICAL HIGH RESOLUTION TRANSMISSION ELECTRON MICROSCOPY(AHRTEM) -- 1. INTRODUCTION -- 1.1 The Cathode of Lithium Battery is the Li+ Source and Sinks -- 1.2 The Compositional and Structural Feature of Surface of a Cathode Particle -- 1.3 Fundamental Structural and Compositional Relationships between the NaFeO2 and LiMO2 (M=Co,Ni,Mn) -- 1.4 Analytical High Resolution Transmission Electron Microscopy (AHRTEM) is a Powerful Tool for Revealing Composition and Structure Variation of the Cathode Particles of a Cycled Lithium Battery at Atomic Scale -- 2. BASIC EXPERIMENT TECHNIQUES -- 2.1 Preparation of the Cycled Cathode Particles for AHRTEM -- 2.2 Micro-Diffraction and Micro-Analysis of the Cycled Cathode Particles -- 2.3 One- and Two- Dimension Lattices Images and Analysis -- 3. COMPOSITIONAL AND STRUCTURAL EVOLUTION OF THE CATHODE CYCLED PARTICLES OF THE LITHIUM BATTERIES -- 3.1 LiCoO2 -- 3.2 LiNi1/3Co1/3Mn1/3O2 -- 3.3 LiNi0.8Co0.2O2 -- 4. DISCUSSION AND CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 7 SOFT SOLUTION PROCESSING OF NANOSCALED LITHIUM VANADIUM OXIDES AS CATHODE MATERIALS FOR RECHARGEABLE LITHIUM ION BATTERIES -- ABSTRACT -- INTRODUCTION -- LI1+XV3O8 -- Introduction -- Experimental Section -- Synthesis and characterization of LiV3O8 -- Electrochemical measurements -- Results and Discussion -- TGA result -- The XRD and the Structure of LiV3O8 -- The morphology of the as-synthesized LiV3O8 -- FTIR of the as-synthesized LiV3O8 -- Electrochemical properties of the as-synthesized LiV3O8 -- CONCLUSION -- -LIV2O5 -- Introduction -- Experimental Section -- Synthesis and characterization of -LiV2O5 -- Electrochemical measurements -- Results and Discussion. 327 $aThe XRD results and the kinetic processing of the formation of -LiV2O5 -- FTIR of the as-synthesized -LiV2O5 -- XPS of the as-synthesized -LiV2O5 -- The morphologies of the as-synthesized -LiV2O5 -- Electrochemical properties of the as-synthesized -LiV2O5 -- CONCLUSION -- REFERENCE -- Chapter 8 ADVANCED LITHIUM-ION BATTERIES FOR PLUG-IN HYBRID-ELECTRIC VEHICLES -- ABSTRACT -- 1. INTRODUCTION -- 2. STATUS OF ADVANCED BATTERY DEVELOPMENT -- 3. SPINEL-TITANATE BATTERY PERFORMANCE MODELING -- 3.1 Approach -- 3.2 Experimental Data -- 3.3 Battery Design Modeling -- 3.4 Impedance Modeling -- 4. VEHICLE SIMULATION FOR HIGH-POWER BATTERIES -- 4.1 Approach -- 4.2 Vehicle Characteristics -- 4.3 Component Sizing Algorithm -- 4.4 Control Strategy Philosophy -- 4.5 Fuel Economy Results -- (1) Engine started during the first cycle -- 5. CONCLUSIONS -- 6. ACKNOWLEDGMENTS -- 7. REFERENCES -- INDEX -- Blank Page. 410 0$aElectrical engineering developments series. 606 $aLithium cells 615 0$aLithium cells. 676 $a621.31/2423 701 $aDahlin$b Greger R$01686829 701 $aStrøm$b Kalle E$01686830 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910823626603321 996 $aLithium batteries$94059873 997 $aUNINA