LEADER 01517nam 2200421 450 001 9910157851003321 005 20210107232604.0 010 $a0-19-177417-0 035 $a(CKB)3710000000586248 035 $a(StDuBDS)EDZ0001297988 035 $a(MiAaPQ)EBC4841942 035 $a(EXLCZ)993710000000586248 100 $a20150814d2016 fy| 0 101 0 $aeng 135 $aur||||||||||| 181 $2rdacontent 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aEffective medium theory $eprinciples and applications /$fTuck C. Choy$b[electronic resource] 205 $aSecond edition. 210 1$aOxford :$cOxford University Press,$d2016. 215 $a1 online resource $cillustrations (black and white) 225 1 $aInternational series of monographs on physics 311 $a0-19-870509-3 320 $aIncludes bibliographical references and index. 330 8 $aEffective medium theory is a tool used in condensed matter physics to consider the effect of interactions between fields and materials with various properties. Professor Choy covers both the underlying theory and practical applications. 410 0$aInternational series of monographs on physics. 606 $aMatter$xProperties 615 0$aMatter$xProperties. 676 $a530 700 $aChoy$b Tuck C.$0496166 801 0$bStDuBDS 801 1$bStDuBDS 906 $aBOOK 912 $a9910157851003321 996 $aEffective medium theory$9749451 997 $aUNINA LEADER 05203nam 2200661 450 001 9910823412603321 005 20230803195017.0 010 $a1-118-74989-8 010 $a1-118-41800-X 010 $a1-118-41527-2 035 $a(CKB)2670000000491069 035 $a(EBL)1576672 035 $a(SSID)ssj0001163856 035 $a(PQKBManifestationID)11666630 035 $a(PQKBTitleCode)TC0001163856 035 $a(PQKBWorkID)11164516 035 $a(PQKB)11329724 035 $a(OCoLC)870639662 035 $a(MiAaPQ)EBC1576672 035 $a(Au-PeEL)EBL1576672 035 $a(CaPaEBR)ebr10814698 035 $a(CaONFJC)MIL552044 035 $a(OCoLC)864912214 035 $a(EXLCZ)992670000000491069 100 $a20131223d2014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMicrofluidics and nanofluidics $etheory and selected applications /$fClement Kleinstreuer ; cover design Anne-Michele Abbott 210 1$aHoboken, New Jersey :$cWiley,$d2014. 210 4$dİ2014 215 $a1 online resource (456 p.) 300 $aDescription based upon print version of record. 311 $a0-470-61903-1 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright; Contents; Preface; Part A: A Review of Essentials in Macrofluidics; Chapter 1 Theory; 1.1 Introduction and Overview; 1.2 Definitions and Concepts; 1.2.1 Definitions; 1.2.2 Flow Field Description; 1.2.3 Flow Field Categorization; 1.2.4 Thermodynamic Properties and Constitutive Equations; 1.3 Conservation Laws; 1.3.1 Derivation Approaches; 1.3.2 Reynolds Transport Theorem; 1.3.2.1 Fluid Mass Conservation in Integral Form; 1.3.2.2 Momentum Conservation in Integral Form; 1.3.2.3 Conservation Laws of Energy and Species Mass 327 $a1.3.3 Conservation Equations in Differential Form1.3.3.1 Fluid Mass Conservation; 1.3.3.2 Linear Momentum Conservation; 1.3.3.3 Reduced Forms of the Momentum Equation; 1.3.3.4 Energy and Species Mass Conservation; 1.3.4 Entropy Generation Analysis; 1.4 Homework Assignments; 1.4.1 Physical Insight; 1.4.2 Text Problems; Chapter 2 Applications; 2.1 Internal Fluid Flow; 2.1.1 Problem-Solving Steps; 2.1.2 Sample Solutions of the Reduced Navier-Stokes Equations; 2.2 Porous Medium Flow; 2.3 Mixture Flows; 2.3.1 Introduction; 2.3.2 Modeling Approaches; 2.3.3 Homogeneous Flow Equations 327 $a2.3.4 Non-Newtonian Fluid Flow2.3.5 Particle Transport; 2.4 Heat Transfer; 2.4.1 Forced Convection Heat Transfer; 2.4.2 Convection Heat Transfer Coefficient; 2.5 Convection-Diffusion Mass Transfer; 2.5.1 Modeling Approaches; 2.5.2 Compartmental Modeling; 2.6 Homework Assignments; 2.6.1 Definitions, Concepts, and Physical Insight; 2.6.2 Text Problem; 2.6.3 Homework Sets; 2.6.3.1 Homework Set Ia; 2.6.3.2 Homework Set Ib; 2.6.3.3 Homework Set IIa; 2.6.3.4 Homework Set IIb; References (Part A); Part B: Microfluidics; Chapter 3 Microchannel Flow Theory; 3.1 Introduction 327 $a3.1.1 Microfluidic System Components3.1.2 Microfluidic System Integration; 3.1.3 Microfluidic System Challenges; 3.2 Basic Concepts and Limitations; 3.2.1 Scaling Laws; 3.2.2 Fluid Properties and Surface Tension Effects; 3.2.3 Wall Slip Velocity and Temperature Jump; 3.2.4 Electrokinetic Phenomena; 3.2.4.1 Electroosmosis; 3.2.4.2 Electrostatics; 3.2.4.3 Electrophoresis; 3.2.4.4 Nernst-Planck Equation; 3.2.5 Magnetohydrodynamics; 3.3 Homework Assignments; 3.3.1 Physical Insight; 3.3.2 Text Problems; Chapter 4 Applications in Microfluidics; 4.1 Introduction; 4.2 Micropumps and Microchannel Flow 327 $a4.2.1 Micropumps4.2.2 Liquid Flow in Microchannels; 4.2.3 Gas Flow in Microchannels; 4.3 Micromixing; 4.4 Laboratory-on-a-Chip Devices; 4.4.1 LoC Processing Steps; 4.4.2 LoC Applications; 4.5 Homework Assignments and Course Projects; 4.5.1 Text-related Questions and Tasks; 4.5.2 Set-Up for Course Projects (CPs); References (Part B); Part C: Nanofluidics; Chapter 5 Fluid Flow and Nanofluid Flow in Nanoconduits; 5.1 Introduction; 5.1.1 Overview; 5.1.2 Nanostructures; 5.1.3 Nanothermodynamics; 5.2 Liquid Flow in Nanoconduits; 5.2.1 Introduction and Overview 327 $a5.2.2 Nontraditional Simulation Methods 330 $aFluidics originated as the description of pneumatic and hydraulic control systems, where fluids were employed (instead of electric currents) for signal transfer and processing. Microfluidics and Nanofluidics: Theory and Selected Applications offers an accessible, broad-based coverage of the basics through advanced applications of microfluidics and nanofluidics. It is essential reading for upper-level undergraduates and graduate students in engineering and professionals in industry. 606 $aMicrofluidics 606 $aNanofluids 615 0$aMicrofluidics. 615 0$aNanofluids. 676 $a629.8042 700 $aKleinstreuer$b C$016556 701 $aAbbott$b Anne-Michele$01646327 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910823412603321 996 $aMicrofluidics and nanofluidics$93993271 997 $aUNINA