LEADER 05654nam 2200685 450 001 9910823353003321 005 20200520144314.0 010 $a1-119-10275-8 010 $a1-119-10304-5 010 $a1-119-10291-X 035 $a(CKB)3710000000366201 035 $a(EBL)1980999 035 $a(SSID)ssj0001468130 035 $a(PQKBManifestationID)11865376 035 $a(PQKBTitleCode)TC0001468130 035 $a(PQKBWorkID)11518728 035 $a(PQKB)10524651 035 $a(MiAaPQ)EBC1980999 035 $a(Au-PeEL)EBL1980999 035 $a(CaPaEBR)ebr11027504 035 $a(CaONFJC)MIL770183 035 $a(OCoLC)905919597 035 $a(PPN)189244445 035 $a(EXLCZ)993710000000366201 100 $a20150312h20152015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aDiscrete element model and simulation of continuous materials behavior set$hVolume 1$iDiscrete element method to model 3D continuous materials /$fMohamed Jebahi [and three others] 210 1$aLondon, England ;$aHoboken, New Jersey :$ciSTE :$cWiley,$d2015. 210 4$dİ2015 215 $a1 online resource (198 p.) 225 1 $aNumerical Methods in Engineering Series 300 $aDescription based upon print version of record. 311 $a1-84821-770-6 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright; Contents; List of Figures; List of Tables; Preface; Introduction; I.1. Toward discrete element modeling of continuous materials; I.2. Scope and objective; I.3. Organization; 1: State of the Art: Discrete Element Modeling; 1.1. Introduction; 1.2. Classification of discrete methods; 1.2.1. Quantum mechanical methods; 1.2.2. Atomistic methods; 1.2.3. Mesoscopic discrete methods; 1.2.3.1. Lattice methods; 1.2.3.2. Smooth contact particle methods; 1.2.3.3. Non-smooth contact particle models; 1.2.3.4. Hybrid lattice-particle models 327 $a1.3. Discrete element method for continuous materials1.4. Discrete-continuum transition: macroscopic variables; 1.4.1. Stress tensor for discrete systems; 1.4.2. Strain tensor for discrete systems; 1.4.2.1. Equivalent continuum strains; 1.4.2.2. Best-fit strains; 1.4.2.3. Satake strain; 1.5. Conclusion; 2: Discrete Element Modeling of Mechanical Behavior of Continuous Materials; 2.1. Introduction; 2.2. Explicit dynamic algorithm; 2.3. Construction of the discrete domain; 2.3.1. The cooker compaction algorithm; 2.3.1.1. Stopping criterion of compaction process; 2.3.1.2. Filling process 327 $a2.3.1.3. Overlapping removing2.3.2. Geometrical characterization of the discrete domain; 2.3.2.1. Geometrical isotropy and granulometry; 2.3.2.2. Average coordination number; 2.3.2.3. Discrete domain fineness; 2.4. Mechanical behavior modeling; 2.4.1. Cohesive beam model; 2.4.1.1. Analytical model; 2.4.1.2. Strain energy computation; 2.4.2. Calibration of the cohesive beam static parameters; 2.4.2.1. Quasistatic tensile test description; 2.4.2.1.1. From discrete to continuous geometry; 2.4.2.1.2. Loading; 2.4.2.1.3. EM and ?M computation; 2.4.2.2. Parametric study 327 $a2.4.2.2.1. Microscopic Poisson's ratio influence2.4.2.2.2. Microscopic Young's modulus influence; 2.4.2.2.3. Microscopic radius ratio influence; 2.4.2.3. Calibration method for static parameters; 2.4.2.4. Convergence study; 2.4.2.5. Validation; 2.4.3. Calibration of the cohesive beam dynamic parameters; 2.4.3.1. Calibration method for dynamic parameters; 2.4.3.2. Validation; 2.5. Conclusion; 3: Discrete Element Modeling of Thermal Behavior of Continuous Materials; 3.1. Introduction; 3.2. General description of the method; 3.2.1. Characterization of field variable variation in discrete domain 327 $a3.2.2. Application to heat conduction3.3. Thermal conduction in 3D ordered discrete domains; 3.4. Thermal conduction in 3D disordered discrete domains; 3.4.1. Determination of local parameters for each discrete element; 3.4.2. Calculation of discrete element transmission surface; 3.4.3. Calculation of local volume fraction; 3.4.4. Interactions between each discrete element and its neighbors; 3.5. Validation; 3.5.1. Cylindrical beam in contact with a hot plane; 3.5.2. Dynamically heated sheet; 3.6. Conclusion; 4: Discrete Element Modeling of Brittle Fracture; 4.1. Introduction 327 $a4.2. Fracture model based on the cohesive beam bonds 330 $a Complex behavior models (plasticity, cracks, visco elascticity) face some theoretical difficulties for the determination of the behavior law at the continuous scale. When homogenization fails to give the right behavior law, a solution is to simulate the material at a meso scale in order to simulate directly a set of discrete properties that are responsible of the macroscopic behavior. The discrete element model has been developed for granular material. The proposed set shows how this method is capable to solve the problem of complex behavior that are linked to discrete meso scale effects. 410 0$aNumerical methods in engineering series. 606 $aMaterials$xMathematical models 606 $aDiscrete element method 615 0$aMaterials$xMathematical models. 615 0$aDiscrete element method. 676 $a620.11015118 700 $aJebahi$b Mohamed$01680794 702 $aJebahi$b Mohamed 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910823353003321 996 $aDiscrete element model and simulation of continuous materials behavior set$94109492 997 $aUNINA