LEADER 05240nam 2200553 450 001 9910823133903321 005 20200520144314.0 010 $a0-12-801177-7 010 $a0-12-800950-0 035 $a(CKB)3710000000469711 035 $a(EBL)2198342 035 $a(Au-PeEL)EBL2198342 035 $a(CaPaEBR)ebr11306159 035 $a(CaONFJC)MIL827361 035 $a(OCoLC)922283379 035 $a(MiAaPQ)EBC2198342 035 $a(PPN)198667914 035 $a(EXLCZ)993710000000469711 100 $a20161202h20162016 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 00$aHandbook of materials failure analysis with case studies from the aerospace and automotive industries /$fedited by Abdel Salam Hamdy Makhlouf, Mahmood Aliofkhazraei 210 1$aOxford, England ;$aWaltham, Massachusetts :$cButterworth-Heinemann,$d2016. 210 4$dİ2016 215 $a1 online resource (528 p.) 300 $aDescription based upon print version of record. 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aFront Cover; Handbook of Materials Failure Analysis With Case Studies from the Aerospace and Automotive Industries; Copyright; Contents; Contributors; Preface; Part 1: Failure analysis in aircraft and aerospace structures; Chapter 1: Strategies for static failure analysis on aerospace structures; 1. Introduction; 2. Delamination Growth in Composites; 2.1. VCCT Fundamentals; 2.2. Experimental Benchmark and FEM Simulation; 2.3. FEMs Comparison; 2.4. Delamination Growth Tool; 2.5. Correlation Between FEM Simulations and Tests; 2.6. Mesh Size Effects 327 $a2.7. Comparison of Mixed-Mode Failure Criteria2.8. Conclusion and Further Work in Delamination Growth Analysis; 3. Debonding Onset and Growth; 3.1. DCB Coupon: Mode I Interlaminar Fracture Toughness Test; 3.2. FE Modeling; 3.3. CZ Fundamentals; 3.4. Mesh Dependency; 3.5. Experimental Results; 3.6. Correlation FEM Simulation-Tests; 3.7. Conclusion and Future Work in Debonding Analysis; 4. Crack Growth in Metallic Structures; 4.1. CTOA Criterion-Experimental Obtaining of CTOAC; 4.2. Crack Growth Tool; 4.3. Benchmarks Description; 4.4. FEM Modeling; 4.5. Correlation Simulations-Tests 327 $a4.6. Crack Growth in Metallic Structures-Conclusion and Future WorkReferences; Chapter 2: Strategies for dynamic failure analysis on aerospace structures; 1. Introduction; 2. Land Incidents; Low-Velocity Impacts; 2.1. FEM Modeling and Analysis; 2.2. Conclusion and Recommendations; 3. Land Incidents; Frangibility of Airport Structures; 3.1. Design to be Analyzed; 3.2. Numerical Analysis Tool Used in Impact Problems; 3.3. Model Correlation with Lateral Loading Test; 3.4. Mechanical Properties and Failure Criterion Validation; 3.5. Frangibility Simulation Results; 4. Flight Incidents 327 $aBlade Loss of a Transport Aircraft4.1. Blade-Loss Phenomenon; 4.2. Description of the Models; 4.3. FEM Model and Simplified Model; 4.4. Analysis Considerations, Implicit and Explicit Method, Time Step; 4.5. Loads and Boundary Conditions; 4.6. Load Cases Analyzed; 4.7. Results; 4.8. Conclusion; 5. Conclusion; Acknowledgments; References; Chapter 3: The evolution of failure analysis at NASAs Kennedy Space Center and lessons learned; 1. Introduction; 2. Long-Duration Space Operations; 2.1. Skylab; 2.2. International Space Station; 3. Failure in LEO: The Solar Alpha Rotary Joint 327 $a3.1. STS-117 Mission Overview3.2. SARJ Hardware Overview; 3.3. STS-117 Mission Details; 4. The Problem; 4.1. Troubleshooting During the STS-120 Mission; 4.2. Initial KSC SARJ Investigation; 4.3. NASA SARJ Investigation; 4.4. Expedition 16 Sample Analysis; 4.5. Postanalysis On-orbit Inspection; 4.6. The Repair on STS-126, November 2008; 4.7. What About the Port-SARJ?; 5. Conclusion; References; Chapter 4: Fleet impact resulting from a space shuttle Columbia main engine controller wire failure during Mission STS-93; 1. Space Shuttle Columbia Wiring Hardware Overview; 2. Investigation 327 $a3. Conclusion 330 $a Handbook of Materials Failure Analysis: With Case Studies from the Aerospace and Automotive Industries provides a thorough understanding of the reasons materials fail in certain situations, covering important scenarios, including material defects, mechanical failure as a result of improper design, corrosion, surface fracture, and other environmental causes. The book begins with a general overview of materials failure analysis and its importance, and then logically proceeds from a discussion of the failure analysis process, types of failure analysis, and specific tools and techniques, to c 606 $aMaterials$xFatigue$vHandbooks, manuals, etc 615 0$aMaterials$xFatigue 676 $a620.1123 702 $aMakhlouf$b Abdel Salam Hamdy 702 $aAliofkhazraei$b Mahmood 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910823133903321 996 $aHandbook of materials failure analysis with case studies from the aerospace and automotive industries$93990524 997 $aUNINA