LEADER 03477nam 2200553 450 001 9910822968103321 005 20230814221547.0 010 $a3-11-053198-4 024 7 $a10.1515/9783110533002 035 $a(CKB)4100000001044484 035 $a(MiAaPQ)EBC5150940 035 $a(DE-B1597)477388 035 $a(OCoLC)1013820320 035 $a(DE-B1597)9783110533002 035 $a(Au-PeEL)EBL5150940 035 $a(CaPaEBR)ebr11471627 035 $a(EXLCZ)994100000001044484 100 $a20171220h20182018 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 00$aRichardson extrapolation $epractical aspects and applications /$fZahari Zlatev [and three others] 210 1$aBerlin, [Germany] ;$aBoston, [Massachusetts] :$cDe Gruyter,$d2018. 210 4$dİ2018 215 $a1 online resource (292 pages) $cillustrations 225 1 $aDe Gruyter Series in Applied and Numerical Mathematics,$x2512-1820 ;$vVolume 2 311 $a3-11-051649-7 311 $a3-11-053300-6 320 $aIncludes bibliographical references and index. 327 $tFrontmatter -- $tPreface -- $tContents -- $t1. The basic properties of Richardson extrapolation -- $t2. Richardson extrapolation for explicit Runge-Kutta methods -- $t3. Linear multistep and predictor-corrector methods -- $t4. Richardson extrapolation for some implicit methods -- $t5.2 Richardson extrapolation for splitting techniques -- $t6. Richardson extrapolation for advection problems -- $t7. Richardson extrapolation for some other problems -- $t8. General conclusions -- $tReferences -- $tList of abbreviations -- $tAuthor index -- $tSubject index 330 $aScientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by the automatic variation of the time-stepsizes. A third issue, the stability of the computations, is very often the most important one and, therefore, it is the major topic studied in all chapters of this book.Clear explanations and many examples make this text an easy-to-follow handbook for applied mathematicians, physicists and engineers working with scientific models based on differential equations. ? ContentsThe basic properties of Richardson extrapolationRichardson extrapolation for explicit Runge-Kutta methodsLinear multistep and predictor-corrector methodsRichardson extrapolation for some implicit methodsRichardson extrapolation for splitting techniquesRichardson extrapolation for advection problemsRichardson extrapolation for some other problemsGeneral conclusions 410 0$aDe Gruyter series in applied and numerical mathematics ;$vVolume 2. 606 $aDifferential equations$xNumerical solutions 606 $aDifferential equations, Partial$xNumerical solutions 615 0$aDifferential equations$xNumerical solutions. 615 0$aDifferential equations, Partial$xNumerical solutions. 676 $a515/.35 686 $aSK 920$2rvk 700 $aZlatev$b Zahari, $055317 702 $aZlatev$b Zahari$f1939- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910822968103321 996 $aRichardson extrapolation$93954896 997 $aUNINA