LEADER 01506nam a2200373 i 4500 001 991000994199707536 005 20020507104858.0 008 990923s1994 uk ||| | eng 020 $a9780750303262 035 $ab10158637-39ule_inst 035 $aLE00640331$9ExL 040 $aDip.to Fisica$beng 082 00$a539.72 084 $a53.3.2 084 $aLC QC793 111 2 $aScottish Universities Summer School in Physics on high energy phenomenology$0462307 245 00$aHigh energy phenomenology :$bproceedings of the Forty Second Scottish Universities Summer School in Physics, St Andrews, August 1993 /$cedited by K.J. Peach, L.L.J. Vick 260 $aEdinburgh :$bSUSSP Publications ; Bristol : IOP Publishing,$c1994 300 $axiv, 481 p. :$bill. ;$c24 cm 490 0 $aSUSSP Proceedings ;$v42 500 $a"A NATO Advanced Study Institute." 650 4$a Particles (Nuclear physics)$xCongresses 650 4$aPhenomenological theory (Physics)$xCongresses 650 4$aStandard model (Nuclear physics)$xCongresses 650 4$aQuantum chromodynamics$xCongresses 650 4$aHadrons$xCongresses 700 1 $aPeach, K.J. 700 1 $aVick, L.L.J. 907 $a.b10158637$b17-02-17$c27-06-02 912 $a991000994199707536 945 $aLE006 53.3.2 PEA$g1$i2006000079693$lle006$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10192505$z27-06-02 996 $aHigh energy phenomenology$9187526 997 $aUNISALENTO 998 $ale006$b01-01-99$cm$da $e-$feng$guk $h0$i1 LEADER 02161nam 2200553 450 001 9910822904603321 005 20220517153232.0 010 $a1-4704-4129-2 035 $a(CKB)3790000000534962 035 $a(MiAaPQ)EBC5110281 035 $a(Au-PeEL)EBL5110281 035 $a(CaPaEBR)ebr11491784 035 $a(OCoLC)1005657576 035 $a(RPAM)19991811 035 $a(PPN)220239762 035 $a(EXLCZ)993790000000534962 100 $a20220517d2017 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aOptimal regularity and the free boundary in the parabolic Signorini problem /$fDonatella Danielli [and three others] 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2017] 210 4$dİ2017 215 $a1 online resource (90 pages) 225 1 $aMemoirs of the American Mathematical Society ;$vVolume 249, Number 1181 311 $a1-4704-2547-5 320 $aIncludes bibliographical references. 330 $aThe authors give a comprehensive treatment of the parabolic Signorini problem based on a generalization of Almgren's monotonicity of the frequency. This includes the proof of the optimal regularity of solutions, classification of free boundary points, the regularity of the regular set and the structure of the singular set. 410 0$aMemoirs of the American Mathematical Society ;$vVolume 249, Number 1181. 606 $aElasticity$xMathematical models 606 $aBoundary value problems 606 $aMathematical physics 615 0$aElasticity$xMathematical models. 615 0$aBoundary value problems. 615 0$aMathematical physics. 676 $a531.382 700 $aDanielli$b Donatella$f1966-$0502357 702 $aGarofalo$b Nicola 702 $aPetrosyan$b Arshak$f1975- 702 $aTo$b Tung$f1980- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910822904603321 996 $aOptimal regularity and the free boundary in the parabolic Signorini problem$94106132 997 $aUNINA