LEADER 05082oam 2200529 450 001 9910822847703321 005 20190911100032.0 010 $a0-444-53881-X 035 $a(OCoLC)854346214 035 $a(MiFhGG)GVRL6ZNQ 035 $a(EXLCZ)992660000000011017 100 $a20131209d2013 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 00$aNew and future developments in catalysis$iBatteries, hydrogen storage and fuel cells /$fedited by Steven L. Suib, Department of Chemistry and Chemical Engineering and Institute of Materials Science, The University of Connecticut, Storrs, CT 06269-3060 210 $aAmsterdam $cElsevier$d2013 210 1$aAmsterdam :$cElsevier,$d2013. 215 $a1 online resource (xiii, 535 pages) $cillustrations (some color) 225 0 $aGale eBooks 225 0$aNew and future developments in catalysis 300 $aDescription based upon print version of record. 311 $a0-444-53880-1 320 $aIncludes bibliographical references and index. 327 $aHalf Title; Title Page; Copyright; Contents; Introduction; Contributors; 1 Catalytic Batteries; 1.1 Introduction; 1.2 Metal-Air Batteries; 1.2.1 Catalytic Materials in Metal-Air Cells; 1.2.2 Aluminum-Air Batteries; 1.2.3 Lithium-Air Batteries; 1.2.4 Magnesium-Air Batteries; 1.2.5 Zinc-Air Batteries; 1.3 Environmental Conditions for Catalysts; 1.4 Safety Concerns for Metal-Air Battery Experimentation; 1.5 Future of Catalysts in Metal-Air Batteries; References; 2 A Novel Enzymatic Technology for Removal of Hydrogen Sulfide from Biogas; 2.1 Introduction; 2.2 Experimental 327 $a2.3 Results and Discussion 2.3.1 Effect of Enzyme Concentration; 2.3.2 Effect of Gas Flow Rate; 2.3.3 Effect of Enzyme Replenishment; 2.3.3.1 Replenishment at Saturation Point; 2.3.3.2 Replenishment at H2S Breakthrough; 2.3.4 Effect of Packing Material; 2.3.5 Sulfur Components Recovery; 2.4 Conclusions; Acknowledgments; References; 3 Electrocatalysts for the Electrooxidation of Ethanol; 3.1 Introduction; 3.2 Electrooxidation of Ethanol on Polycrystalline Pt, Pt (hkl) Electrodes and Pt/C Electrodes. Identification and Oxidation of Ethanol Adsorbate(s) 327 $a3.2.1 Electrochemical Studies of the Electrooxidation of Ethanol in Acid Medium 3.2.2 Identification of Ethanol Adsorbate and Oxidation Products by EC-FTIR and DEMS on Polycrystalline Pt and Pt/C Electrodes; 3.2.3 Adsorption and Electrooxidation of Acetic Acid; 3.2.4 Adsorption and Electrooxidation of Acetaldehyde; 3.3 Reaction Pathways and Mechanism of the Electrooxidation of Ethanol; 3.4 Designing of Supported Electrocatalysts for the Electrooxidation of Ethanol; 3.5 Fuel Cell Studies; 3.6 Summary; Acronyms and Symbols; References 327 $a4 Catalytic Processes Using Fuel Cells, Catalytic Batteries, and Hydrogen Storage Materials 4.1 Introduction; 4.2 Catalytic Processes in Fuel Cells; 4.2.1 Low-Temperature PEMFCs; 4.2.1.1 Hydrogen/Air(Oxygen) Fuel Cells; 4.2.1.1.1 Precious Metal-Based Catalysts; 4.2.1.1.2 Non-Precious Metal Catalysts; 4.2.1.2 Catalytic Processes in DMFCs; 4.2.1.2.1 Mechanism of Methanol Electrooxidation; 4.2.1.2.2 Precious Metal-Based Catalysts; 4.2.1.2.3 Non-Precious Metal Catalysts for Methanol Electrooxidation; 4.2.2 Solid Oxide Fuel Cells; 4.2.2.1 Methane Steam Reforming 327 $a4.3 Catalytic Processes in Batteries 4.3.1 Metal/Air Batteries; 4.3.1.1 Aqueous Electrolyte Metal/Air Batteries; 4.3.1.2 Non-Aqueous Electrolyte Li-Air Batteries; 4.3.2 Li-Water Batteries; 4.4 Catalytic Processes in Hydrogen Storage Materials; 4.4.1 Catalysis in Metal Hydrides; 4.4.2 Catalysts in Metal Organic Frameworks; 4.5 Summary; Acknowledgments; References; 5 Hydrogen Storage Materials; 5.1 Introduction; 5.2 Essential Properties of Hydrogen in Metals; 5.2.1 Thermodynamics; 5.2.2 Kinetics of Hydrogen Absorption and Desorption; 5.3 Hydride; 5.3.1 Ionic Hydride; 5.3.2 Covalent Hydride 327 $a5.3.3 Metallic Hydride (Interstitial Hydride) 330 $aNew and Future Developments in Catalysis is a package of seven books that compile the latest ideas concerning alternate and renewable energy sources and the role that catalysis plays in converting new renewable feedstock into biofuels and biochemicals. Both homogeneous and heterogeneous catalysts and catalytic processes will be discussed in a unified and comprehensive approach. There will be extensive cross-referencing within all volumes. Batteries and fuel cells are considered to be environmentally friendly devices for storage and production of electricity, and they are gaining considerable 606 $aFuel cells 606 $aElectric batteries 606 $aCatalysts 615 0$aFuel cells. 615 0$aElectric batteries. 615 0$aCatalysts. 676 $a621.3124 702 $aSuib$b Steven L.$f1953- 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910822847703321 996 $aNew and future developments in catalysis$93913602 997 $aUNINA