LEADER 03387oam 2200685I 450 001 9910822751503321 005 20230105190739.0 010 $a0-429-11620-9 010 $a1-282-90218-0 010 $a9786612902185 010 $a1-4200-1463-3 024 7 $a10.1201/EBK0824740993 035 $a(CKB)2670000000048269 035 $a(EBL)589942 035 $a(OCoLC)680038567 035 $a(SSID)ssj0000416259 035 $a(PQKBManifestationID)11304620 035 $a(PQKBTitleCode)TC0000416259 035 $a(PQKBWorkID)10422346 035 $a(PQKB)11589592 035 $a(MiAaPQ)EBC589942 035 $a(Au-PeEL)EBL589942 035 $a(CaPaEBR)ebr10419935 035 $a(CaONFJC)MIL290218 035 $a(PPN)221805028 035 $a(OCoLC)1287179999 035 $a(FINmELB)ELB154315 035 $a(EXLCZ)992670000000048269 100 $a20180420d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDynamic programming $efoundations and principles /$fMoshe Sniedovich 205 $a2nd ed. 210 $aBoca Raton $cCRC Press$d2010 210 1$aBoca Raton :$cCRC Press,$d2010. 215 $a1 online resource (616 p.) 225 0 $aPure and applied mathematics 300 $aDescription based upon print version of record. 311 $a0-8247-4099-8 320 $aIncludes bibliographical references. 327 $aFront cover; Preface (first edition); List of Figures; List of Tables; Contents; Chapter 1. Introduction; Chapter 2. Fundamentals; Chapter 3. Multistage Decision Model; Chapter 4. Dynamic Programming - An Outline; Chapter 5. Solution Methods; Chapter 6. Successive Approximation Methods; Chapter 7. Optimal Policies; Chpater 8. The Curse of Dimensionality; Chapter 9. The Rest Is Mathematics and Experience; Chapter 10. Refinements; Chapter 11. The State; Chapter 12. Parametric Schemes; Chapter 13. The Principle of Optimality; Chapter 14. Forward Decomposition; Chapter 15. Push! 327 $aChapter 16. What Then Is Dynamic Programming?Appendix A. Contraction Mapping; Appendix B. Fractional Programming; Appendix C. Composite Concave Programming; Appendix D. The Principle of Optimality in Stochastic Processes; Appendix E. The Corridor Method; Bibliography; Back cover 330 $aFocusing on the modeling and solution of deterministic multistage decision problems, this book looks at dynamic programming as a problem-solving optimization method. With over 400 useful references, this edition discusses the dynamic programming analysis of a problem, illustrates the rationale behind this analysis, and clarifies the theoretical grounds that justify the rationale. It also explains the meaning and role of the concept of state in dynamic programming, examines the purpose and function of the principle of optimality, and outlines solution strategies for problems defiant of conventi 410 0$aPure and Applied Mathematics 606 $aDynamic programming 606 $aProgramming (Mathematics) 615 0$aDynamic programming. 615 0$aProgramming (Mathematics) 676 $a519.7/03 700 $aSniedovich$b Moshe$f1945-$060352 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910822751503321 996 $aDynamic programming$9376373 997 $aUNINA