LEADER 02583nam 22006012 450 001 9910822594003321 005 20151002020706.0 010 $a1-61444-022-0 035 $a(CKB)2670000000386404 035 $a(EBL)3330334 035 $a(SSID)ssj0000713220 035 $a(PQKBManifestationID)11400430 035 $a(PQKBTitleCode)TC0000713220 035 $a(PQKBWorkID)10658277 035 $a(PQKB)11487012 035 $a(UkCbUP)CR9781614440222 035 $a(MiAaPQ)EBC3330334 035 $a(Au-PeEL)EBL3330334 035 $a(CaPaEBR)ebr10722445 035 $a(OCoLC)929120250 035 $a(RPAM)953816 035 $a(EXLCZ)992670000000386404 100 $a20111024d1984|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aRandom walks and electric networks /$fby Peter G. Doyle, J. Laurie Snell$b[electronic resource] 210 1$aWashington :$cMathematical Association of America,$d1984. 215 $a1 online resource (xiii, 159 pages) $cdigital, PDF file(s) 225 0 $aCarus Mathematical Monographs, $x2637-7535 ; $vv. 22 225 0$aCarus mathematical monographs ;$vno. 22 300 $aTitle from publisher's bibliographic system (viewed on 02 Oct 2015). 311 $a0-88385-024-9 320 $aIncludes bibliographical references (p. 151-153) and index. 327 $apt. I. Random walks on finite networks -- pt. II. Random walks on infinite networks. 330 $aProbability theory, like much of mathematics, is indebted to physics as a source of problems and intuition for solving these problems. Unfortunately, the level of abstraction of current mathematics often makes it difficult for anyone but an expert to appreciate this fact. Random Walks and Electric Networks looks at the interplay of physics and mathematics in terms of an example — the relation between elementary electric network theory and random walks —where the mathematics involved is at the college level. 410 0$aCarus 517 3 $aRandom Walks & Electric Networks 606 $aRandom walks (Mathematics) 606 $aElectric network topology 615 0$aRandom walks (Mathematics) 615 0$aElectric network topology. 676 $a519.2/82 700 $aDoyle$b Peter G.$0536628 702 $aSnell$b J. Laurie$g(James Laurie),$f1925-2011, 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910822594003321 996 $aRandom walks and electric networks$93923236 997 $aUNINA