LEADER 01273nam0-22003251i-450- 001 990004035120403321 005 20051202103812.0 035 $a000403512 035 $aFED01000403512 035 $a(Aleph)000403512FED01 035 $a000403512 100 $a19990604d1986----km-y0itay50------ba 101 0 $aita 105 $ay-------10-c- 200 1 $aCulto delle immagini e crisi iconoclasta$eatti del convegno di studi$eCatania 16-17 maggio 1984,$fa cura dello Studio Teologico e dell'Istituto per la documentazione e la ricerca S. Paolo e dell'Istituto di studi Bizantini e Neoellenici dell'Università di Catania 210 $aPalermo$cEDI oftes$d1986 215 $a175 p.$d19 cm 225 1 $aQuaderni di Synaxis$v2 610 0 $aImmagini sacre$aCulto$aSec. 8.-9.$aCongressi$a1984 676 $a246.53$v21$zita 712 02$aUniversità degli studi di Catania.$bIstituto di studi bizantini e neoellenici 712 02$aStudio teologico S. Paolo 712 02$aIsituto per la documentazione e la ricerca S. Paolo 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990004035120403321 952 $a246.53 CONV CATANIA 1984$bBIBL.CENTR.596$fFLFBC 959 $aFLFBC 996 $aCulto delle immagini e crisi iconoclasta$9471191 997 $aUNINA LEADER 04972nam 2200553 450 001 9910822457303321 005 20230912171920.0 010 $a1-118-71212-9 010 $a1-118-71198-X 035 $a(CKB)24989723600041 035 $a(NjHacI)9924989723600041 035 $a(Au-PeEL)EBL1789982 035 $a(CaPaEBR)ebr10933617 035 $a(CaONFJC)MIL646271 035 $a(OCoLC)881418267 035 $a(CaSebORM)9781118712191 035 $a(MiAaPQ)EBC1789982 035 $a(JP-MeL)3000111740 035 $a(MiAaPQ)EBC7103975 035 $a(EXLCZ)9924989723600041 100 $a20140925h20152015 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMathematical structures for computer graphics /$fSteven J. Janke 210 1$aHoboken, New Jersey :$cWiley,$d2015. 210 4$d2015 215 $a1 online resource (xv, 392 pages) $cillustrations 300 $aIncludes bibliographical references and index 320 $aIncludes bibliographical references and index. 327 $aPreface iii -- 1 Basics -- 1 1.1 Graphics Pipeline -- 2 1.2 Mathematical Descriptions -- 5 1.3 Position -- 6 1.4 Distance -- 9 1.5 Complements and Detail -- 13 1.6 Exercises -- 17 2 Vector Algebra -- 21 2.1 Basic Vector Characteristics -- 22 2.2 Two Important Products -- 31 2.3 Complements and Details -- 42 2.4 Exercises -- 46 3 Vector Geometry -- 49 3.1 Lines & Planes -- 49 3.2 Distances -- 55 3.3 Angles -- 63 3.4 Intersections -- 65 3.5 Additional Key Applications -- 73 3.6 Homogeneous Coordinates -- 86 3.7 Complements and Details -- 90 3.8 Exercises -- 94 4 Transformations -- 99 4.1 Types of Transformations -- 100 4.2 Linear Transformations -- 101 4.3 Three dimensions -- 113 4.4 Affine Transformations -- 123 4.5 Complements and Details -- 134 4.6 Exercises -- 145 5 Orientation -- 149 5.1 Cartesian Coordinate Systems -- 151 5.2 Cameras -- 159 5.3 Other Coordinate Systems -- 182 5.4 Complements and Details -- 190 5.5 Exercises -- 193 6 Polygons & Polyhedra -- 197 6.1 Triangles -- 197 6.2 Polygons -- 213 6.3 Polyhedra -- 230 6.4 Complements and Details -- 245 6.5 Exercises -- 250 7 Curves & Surfaces -- 255 7.1 Curve Descriptions -- 256 7.2 Bezier Curves -- 268 7.3 B-Splines -- 278 7.4 NURBS -- 295 7.5 Surfaces -- 300 7.6 Complements and Details -- 311 7.7 Exercises -- 316 8 Visibility -- 321 8.1 Viewing -- 321 8.2 Perspective Transformation -- 323 8.3 Hidden Surfaces -- 333 8.4 Ray Tracing -- 344 8.5 Complements and Details -- 351 8.6 Exercises -- 356 9 Lighting -- 359 9.1 Color Coordinates -- 359 9.2 Elementary Lighting Models -- 364 9.3 Global Illumination -- 384 9.4 Textures -- 391 9.5 Complements and Details -- 403 9.6 Exercises -- 408 10 Other Paradigms -- 411 10.1 Pixels -- 412 10.2 Noise -- 421 10.3 L-Systems -- 435 10.4 Exercises -- 443 A Geometry & Trigonometry -- 447 A.1 Triangles -- 447 A.2 Angles -- 449 A.3 Trigonometric Functions -- 450 B Linear Algebra -- 455 B.1 Systems of Linear Equations -- 455 B.2 Matrix Properties -- 458 B.3 Vector Spaces 460. 330 $aThis book is for readers who wish to understand the mathematical tools that are necessary to produce three-dimensional models and the resulting screen images. Written by an academic with over 20 years of teaching experience, the intent of the book is to show relevant and focused mathematical derivations that help students understand computer graphics. Intuitive, rather than just theorem/proof discussions set the tone for the presentation. Some algebra, high-school geometry, and trigonometry are presumed for adequate comprehension. Notions of why results are important give the reader a sense of ownership and application. Chapters are written in a two-tiered style so as to allow for flexibility in the level of mathematics desired. Two- and three-dimensional vector geometry is covered using transforms, curves, and surfaces. More focused graphics topics like perspective with the accompanying projective geometry, polyhedral as building blocks for objects, and ray retracing help pull the vector technique together. An assortment of other topics helps round-out the discussion. These include noise, randomness, and L-systems. Plentiful exercises are showcased throughout. An author-maintained web site includes further computer programming notes and solutions to selected exercises". 606 $aComputer graphics$xMathematics 606 $aThree-dimensional imaging$xMathematics 615 0$aComputer graphics$xMathematics. 615 0$aThree-dimensional imaging$xMathematics. 676 $a006.601/51 686 $a007.642$2njb/09 686 $a006.601/51$2njb/09 700 $aJanke$b Steven J.$f1947-$0922086 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910822457303321 996 $aMathematical structures for computer graphics$93925688 997 $aUNINA