LEADER 06395nam 2200565 450 001 9910822134603321 005 20230125191557.0 010 $a1-63081-666-3 035 $a(CKB)4940000000149586 035 $a(MiAaPQ)EBC5988153 035 $a(CaBNVSL)mat09098792 035 $a(IEEE)9098792 035 $a(PPN)242741681 035 $a(EXLCZ)994940000000149586 100 $a20200729d2019 uy 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPhotonic applications for radio systems and networks /$f.Fabio Cavaliere, Antonio D'Errico 210 1$aBoston :$cArtech House,$d[2019] 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2019] 215 $a1 online resource (239 pages) 225 1 $aArtech House applied photonics series 311 $a1-63081-665-5 320 $aIncludes bibliographical references and index 327 $aIntro; Photonic Applications forRadio Systems and Networks; Contents; Chapter 1 Introduction; Chapter 2 Radio Systems Physical Layer; 2.1 Introduction; 2.2 Physical Layer of 4G Radio Systems; 2.2.1 Orthogonal Frequency Division Multiplexing; 2.2.2 Orthogonal Frequency Division Multiplexing Access; 2.2.3 LTE Frame Structure; 2.2.4 LTE Systems Bandwidth; 2.2.5 TDD Frame Structure; 2.2.6 LTE Physical Layer Parameters; 2.3 Physical Layer of 5G Radio Systems; 2.3.1 Modulation Schemes; 2.3.2 5G Numerology and Frame Structure; 2.3.3 5G Resource Grid and Bandwidth 327 $a2.3.4 Time Division Duplex 5G Systems2.3.5 5G Physical Layer Parameters; 2.4 Multiple Antenna Systems and Beamforming; 2.5 Signal Processing Chain in 5G; 2.6 Conclusions; References; Chapter 3 Radio Access Network Architecture; 3.1 Introduction; 3.2 5G Use Cases and Requirements; 3.3 The Radio Protocol Stack; 3.4 The HARQ Protocol; 3.5 Latency Budget in Mobile Communication Systems; 3.6 RAN Functional Split; 3.6.1 Radio Split Architecture; 3.6.2 Functional Split Options; 3.7 The 5G Transport Network Architecture; 3.7.1 RAN Logical Interfaces 327 $a3.7.2 Definition of Fronthaul, Midhaul, and Backhaul3.7.3 Mapping of Functional Split Options onto the Transport Network; 3.8 RAN Deployment Scenarios; 3.9 Network Slicing; 3.10 Bit Rate and Latency with Different Functional Split Options; 3.10.1 Bit Rate Dependency on the Split Option; 3.10.2 Bit Rate Calculation; 3.10.3 Latency Calculation; 3.11 Summary; References; Chapter 4 Optical Transmission Modeling in Digital RANs; 4.1 Introduction; 4.2 Fiber Attenuation; 4.3 Performance Metrics in Optical Communication Systems; 4.3.1 Bit Error Rate; 4.3.2 Q Factor; 4.3.3 Optical Modulation Amplitude 327 $a4.3.4 Error Vector Magnitude4.3.5 Optical Signal-to-Noise Ratio; 4.3.6 Using Different Penalty Definitions; 4.4 Optical Receiver Model; 4.5 Fiber Propagation Penalties; 4.5.1 Chromatic Dispersion; 4.5.2 Polarization Mode Dispersion; 4.5.3 Chromatic and Polarization Mode Dispersion Tolerance of Direct Detection Modulation Formats; 4.5.4 Self-Phase Modulation; 4.5.5 Cross-Phase Modulation; 4.5.6 Four-Wave Mixing; 4.6 Stimulated Raman Scattering; 4.6.1 Stimulated Brillouin Scattering; 4.7 Rayleigh Backscattering; 4.8 Summary; References 327 $aChapter 5 Optical Systems and Technologies for Digital Radio Access Networks5.1 Introduction; 5.2 Point-to-Point Fiber Systems; 5.2.1 Optical Modules for Point-to-Point Links; 5.2.2 Modulation Formats in Point-to-Point Links; 5.3 Dense WDM Systems; 5.3.1 Optical Amplifiers; 5.3.2 Statistical Design of DWDM Links; 5.3.3 Wavelength Dependent Losses and Gains; 5.3.4 Modulation Formats in a DWDM RAN; 5.3.5 Further Considerations on DWDM RANs; 5.4 Mobile Transport over Fixed-Access Networks; 5.4.1 Passive Optical Networks; 5.4.2 Mobile Transport over PON; 5.4.3 Dimensioning of a Backhaul Network 330 $aThis hands-on, practical new resource provides optical network designers with basic but necessary information about radio systems air interface and radio access network architecture, protocols, and interfaces, using 5G use cases as relevant example. The book introduces mobile network designers to the transmission modeling techniques for the design of a radio access optical network. The main linear and non-linear propagation effects in optical fiber are covered. The book introduces mobile network designers to the optical technologies used in digital and analog radio access networks, such as optical amplifiers and transmitters, and describes different deployment scenarios, including point-to-point fiber systems, wavelength-division multiplexing systems, and passive optical networks. New integrated photonic technologies for optical switching are also discussed. The book illustrates the principles of optical beamforming and explains how optical technologies can be used to provide accurate phase and frequency control of antenna elements. The new architecture of the optical transport network, driven by the new, challenging requirements that 5G poses in terms of high capacity, high energy efficiency, low latency and low cost is discussed. The use of photonic devices to perform tasks as radio-frequency generation and beamforming, with improved accuracy and cost compared to traditional electronic systems, especially when moving to mm-waves is also explored. Readers also learn the replacement of electric interconnect systems with higher speed and more energy efficient optical lines to perform more effectively computationally demanding baseband processing in 5G. All presented propagation models can be implemented in a spreadsheet, in order to provide the designer with simple rules of thumbs for network planning. 410 0$aArtech House applied photonics series. 606 $aOptical communications$xTechnological innovations 606 $aPhotonics 606 $aMobile communication systems 615 0$aOptical communications$xTechnological innovations. 615 0$aPhotonics. 615 0$aMobile communication systems. 676 $a621.3827 700 $aCavaliere$b Fabio.$01634096 702 $aD'Errico$b Antonio$c(Senior researcher), 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910822134603321 996 $aPhotonic applications for radio systems and networks$93974170 997 $aUNINA