LEADER 05575nam 2200745Ia 450 001 9910821926703321 005 20240313231824.0 010 $a9781118634417 010 $a1118634411 010 $a9781118634493 010 $a1118634497 010 $a9781118634561 010 $a111863456X 035 $a(CKB)2560000000102090 035 $a(EBL)1209634 035 $a(OCoLC)824890399 035 $a(SSID)ssj0000886546 035 $a(PQKBManifestationID)11525249 035 $a(PQKBTitleCode)TC0000886546 035 $a(PQKBWorkID)10834742 035 $a(PQKB)10195119 035 $a(MiAaPQ)EBC1209634 035 $a(DLC) 2013002556 035 $a(Au-PeEL)EBL1209634 035 $a(CaPaEBR)ebr10716661 035 $a(CaONFJC)MIL496075 035 $a(PPN)196492505 035 $a(Perlego)1001244 035 $a(EXLCZ)992560000000102090 100 $a20130116d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aProteomic applications in cancer detection and discovery /$fTimothy D. Veenstra 205 $a1st ed. 210 $aHoboken, NJ $cJohn Wiley & Sons, Inc.$dc2013 215 $a1 online resource (320 p.) 300 $aIncludes index. 311 08$a9780471724063 311 08$a0471724068 327 $aPROTEOMIC APPLICATIONS IN CANCER DETECTION AND DISCOVERY; CONTENTS; PREFACE; ACKNOWLEDGMENTS; 1 SYSTEMS BIOLOGY; 1.1 INTRODUCTION; 1.2 WHAT IS SYSTEMS BIOLOGY?; 1.3 WHAT SYSTEMS DO WE NEED TO STUDY?; 1.3.1 Genomics; 1.3.2 Transcriptomics; 1.3.3 Proteomics; 1.3.4 Metabolomics; 1.4 CANCER IS A SYSTEMS BIOLOGY DISEASE; 1.5 MODELING SYSTEMS BIOLOGY; 1.6 DATA INTEGRATION; 1.6.1 Integrating Transcriptomics and Proteomics; 1.7 CONCLUSIONS; REFERENCES; 2 MASS SPECTROMETRY INCANCER RESEARCH; 2.1 INTRODUCTION; 2.2 MASS SPECTROMETRY: THE TECHNOLOGY DRIVING CANCERPROTEIN BIOMARKER DISCOVERY 327 $a2.2.1 Ion Sources2.2.2 Electrospray Ionization; 2.2.3 Matrix-Assisted Laser Desorption/Ionization; 2.3 TYPES OF MASS SPECTROMETERS; 2.3.1 Ion-Trap Mass Spectrometer; 2.3.2 Fourier Transform Ion Cyclotron Resonance MS; 2.3.3 Orbitrap Mass Spectrometer; 2.3.4 TOF Mass Spectrometer; 2.3.5 Triple-Quadrupole Mass Spectrometer; 2.3.6 Triple-Quadrupole TOF Mass Spectrometer; 2.4 PROTEIN FRACTIONATION; 2.4.1 Polyacrylamide Gel Electrophoresis; 2.4.2 Liquid Chromatography; 2.5 IMPACT OF MS IN CANCER; 2.5.1 Identification of a Drug Target; 2.6 CONCLUSIONS; REFERENCES; 3 QUANTITATIVE PROTEOMICS 327 $a3.1 INTRODUCTION3.2 WHAT IS BEING MEASURED IN QUANTITATIVE PROTEOMICS?; 3.3 TWO-DIMENSIONAL POLYACRYLAMIDE GEL ELECTROPHORESIS; 3.4 TWO-DIMENSIONAL DIFFERENCE GEL ELECTROPHORESIS; 3.5 SOLUTION-BASED QUANTITATIVE METHODS; 3.5.1 Stable Isotope Labeling; 3.5.2 Isotope-Coded Affinity Tags; 3.5.3 Isobaric Tag for Relative and Absolute Quantitation; 3.5.4 Stable Isotope Labeling of Amino Acids in Culture; 3.6 NONISOTOPIC SOLUTION-BASED QUANTITATION; 3.6.1 Subtractive Proteomics-Peptide Counting; 3.6.2 Subtractive Proteomics-Peak Intensity; 3.7 CONCLUSIONS; REFERENCES 327 $a4 PROTEOMIC ANALYSIS OF POSTTRANSLATIONAL MODIFICATIONS4.1 INTRODUCTION; 4.2 PHOSPHORYLATION; 4.2.1 Identification of Phosphorylated Proteins; 4.2.2 Phosphopeptide Mapping; 4.2.3 Collision-Induced Dissociation; 4.2.4 Electron Capture and Electron Transfer Dissociation; 4.2.5 Electron Transfer Dissociation; 4.2.6 Enrichment of Phosphopeptides; 4.2.7 Immunoaffinity Chromatography; 4.2.8 Immobilized Metal Affinity Chromatography; 4.2.9 Metal Oxide Affinity Chromatography; 4.3 GLYCOSYLATION; 4.3.1 Mass Spectrometry Characterization; 4.3.2 Electron Capture and Electron Transfer Dissociation 327 $a4.3.3 Targeted Identification of Glycoproteins4.3.4 Proteome-Wide Identification of Glycoproteins; 4.4 OTHER POSTTRANSLATIONAL MODIFICATIONS; 4.5 CONCLUSIONS; REFERENCES; 5 CHARACTERIZATION OF PROTEIN COMPLEXES; 5.1 INTRODUCTION; 5.2 METHODS FOR ISOLATING PROTEIN COMPLEXES; 5.2.1 Optimizing Protein Complex Isolation; 5.2.2 Importance of Optimizing Isolation Conditions; 5.2.3 Oligoprecipitation; 5.3 PROTEOME SCREENING USING TANDEM AFFINITY PURIFICATION; 5.4 YEAST TWO-HYBRID SCREENING; 5.5 QUICK LC-MS METHOD TO IDENTIFY SPECIFICALLY BOUND PROTEINS; 5.6 PROTEIN ARRAYS 327 $a5.7 FLUORESCENCE MICROSCOPY 330 $a"Bridging the knowledge gap between scientists that develop and apply proteomics technologies and oncologists who focus on understanding the biological basis behind cancer manifestation and progression, Proteomic Applications in Cancer Detection and Discovery provides an up-to-date account of how the multiple facets of proteomics have been applied to cancer. By balancing the treatment of technologies and applications, the book enables analytical scientists and oncologists, post-doctoral researchers, major research or medical centers, cancer researchers, pharmaceutical researchers, chemists, and biologists to better understand both"--$cProvided by publisher. 606 $aBiochemical markers 606 $aCancer$xGenetic aspects 606 $aProteomics 615 0$aBiochemical markers. 615 0$aCancer$xGenetic aspects. 615 0$aProteomics. 676 $a616.99/4042 686 $aSCI029000$2bisacsh 700 $aVeenstra$b Timothy Daniel$f1966-$01637281 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910821926703321 996 $aProteomic applications in cancer detection and discovery$93979031 997 $aUNINA