LEADER 05256nam 2200613Ia 450 001 9910830230803321 005 20230829003144.0 010 $a1-280-85422-7 010 $a9786610854226 010 $a3-527-60795-1 010 $a3-527-60714-5 035 $a(CKB)1000000000377580 035 $a(EBL)482152 035 $a(OCoLC)658579236 035 $a(SSID)ssj0000170930 035 $a(PQKBManifestationID)11177895 035 $a(PQKBTitleCode)TC0000170930 035 $a(PQKBWorkID)10235915 035 $a(PQKB)10489169 035 $a(MiAaPQ)EBC482152 035 $a(EXLCZ)991000000000377580 100 $a20050708d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHigh temperature strain of metals and alloys$b[electronic resource] $ephysical fundamentals /$fValim Levitin 210 $aWeinheim ;$aChichester $cWiley-VCH$d2006 215 $a1 online resource (181 p.) 300 $aDescription based upon print version of record. 311 $a3-527-31338-9 320 $aIncludes bibliographical references and index. 327 $aHigh Temperature Strain of Metals and Alloys; Contents; Introduction; 1 Macroscopic Characteristics of Strain of Metallic Materials at High Temperatures; 2 The Experimental Equipment and the in situ X-ray Investigation Technique; 2.1 Experimental Installation; 2.2 Measurement Procedure; 2.3 Measurements of Structural Parameters; 2.4 Diffraction Electron Microscopy; 2.5 Amplitude of Atomic Vibrations; 2.6 Materials under Investigation; 2.7 Summary; 3 Structural Parameters in High-Temperature Deformed Metals; 3.1 Evolution of Structural Parameters; 3.2 Dislocation Structure 327 $a3.3 Distances between Dislocations in Sub-boundaries3.4 Sub-boundaries as Dislocation Sources and Obstacles; 3.5 Dislocations inside Subgrains; 3.6 Vacancy Loops and Helicoids; 3.7 Total Combination of Structural Peculiarities of High-temperature Deformation; 3.8 Summary; 4 Physical Mechanism and Structural Model of Strain at High Temperatures; 4.1 Physical Model and Theory; 4.2 Velocity of Dislocations; 4.3 Dislocation Density; 4.4 Rate of the Steady-State Creep; 4.5 Effect of Alloying: Relationship between Creep Rate and Mean-Square Atomic Amplitudes 327 $a4.6 Formation of Jogs. Low-Angle Sub-boundaries in f.c.c. and b.c.c. Crystal Lattices4.7 Significance of the Stacking Faults Energy; 4.8 Stability of Dislocation Sub-boundaries; 4.9 Scope of Application of the Theory; 4.10 Summary; 5 Simulation of the Evolution of Parameters during Deformation; 5.1 Parameters of the Physical Model; 5.2 Equations; 5.2.1 Strain Rate; 5.2.2 Change in the Dislocation Density; 5.2.3 The Dislocation Slip Velocity; 5.2.4 The Dislocation Climb Velocity; 5.2.5 The Dislocation Spacing in Sub-boundaries; 5.2.6 Variation of the Subgrain Size 327 $a5.2.7 System of Differential Equations5.3 Results of Simulation: Changes in the Structural Parameters; 5.4 Density of Dislocations during Stationary Creep; 5.5 Summary; 6 High-temperature Deformation of Superalloys; 6.1 ? ? Phase in Superalloys; 6.2 Changes in the Matrix of Alloys during Strain; 6.3 Interaction of Dislocations and Particles of the Hardening Phase; 6.4 Dependence of Creep Rate on Stress. The Average Length of the Activated Dislocation Segments; 6.5 Mechanism of Strain and the Creep Rate Equation; 6.6 Composition of the ? ? Phase and Mean-square Amplitudes of Atomic Vibrations 327 $a6.7 Influence of the Particle Size and Concentration6.8 The Prediction of Properties on the Basis of Integrated Databases; 6.9 Summary; 7 Single Crystals of Superalloys; 7.1 Effect of Orientation on Properties; 7.2 Deformation of Single-crystal Superalloys at Lower Temperatures and Higher Stress; 7.3 Deformation of Single-crystal Superalloys at Higher Temperatures and Lower Stress; 7.4 On the Composition of Superalloys; 7.5 Rafting; 7.6 Effect of Composition and Temperature on ?/? ? Misfit; 7.7 Other Creep Equations; 7.8 Summary; 8 High-temperature Deformation of Some Refractory Metals 327 $a8.1 The Creep Behavior 330 $aCreep and fatigue are the most prevalent causes of rupture in superalloys, which are important materials for industrial usage, e.g. in engines and turbine blades in aerospace or in energy producing industries. As temperature increases, atom mobility becomes appreciable, affecting a number of metal and alloy properties. It is thus vital to find new characterization methods that allow an understanding of the fundamental physics of creep in these materials as well as in pure metals.Here, the author shows how new in situ X-ray investigations and transmission electron microscope studies lead to 606 $aMetals$xEffect of high temperatures on 606 $aAlloys$xThermal properties 615 0$aMetals$xEffect of high temperatures on. 615 0$aAlloys$xThermal properties. 676 $a620.1617 676 $a669.83 700 $aLevitin$b Valim$01613926 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830230803321 996 $aHigh temperature strain of metals and alloys$93980996 997 $aUNINA LEADER 03699nam 22004693 450 001 9910821799703321 005 20211214151240.0 010 $a1-78969-700-X 035 $a(CKB)4100000012027310 035 $a(MiAaPQ)EBC6728882 035 $a(Au-PeEL)EBL6728882 035 $a(OCoLC)1276862014 035 $a(EXLCZ)994100000012027310 100 $a20211214d2020 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPicenum and the Ager Gallicus at the Dawn of the Roman Conquest 205 $a1st ed. 210 1$aOxford :$cArchaeopress,$d2020. 210 4$d©2020. 215 $a1 online resource (232 pages) 327 $aIntro -- A_IndexCaptions_01_Open -- B_Prelims_02_Open -- Chapter_01_Open -- Chapter_02_Open -- Chapter_03_Open -- Chapter_04_Open -- Chapter_05_Open -- Chapter_06_Open -- Chapter_07_Open -- Chapter_08_Open -- Chapter_09_Open -- Chapter_10_Open -- X. A crossroads in the central Potenza Valley: -- non-invasive research into settlement (dis-)continuity at Monte Franco -- (Pollenza, Marche, Italy) -- Introduction -- Current research at Monte Franco (Pollenza) -- Results -- The necropolis of Moie di Pollenza -- Site 12 / 85 -- Functional areas and spatial organization beyond Site 12 -- The longue durée of Site 77 -- Evidence for land management and controlled hydrology -- Discussion: settlement and land use (dis-)continuity at Monte Franco -- Conclusion -- Chapter_11_Open -- Chapter_12_Open -- Chapter_13_Open -- XIII. The Urban Archaeology Project in Asculum. From civitas caput gentis to civitas foederata -- Federica Boschi, Enrico Giorgi, University of Bologna -- Tommaso Casci Ceccacci, Filippo Demma, Soprintendenza Archeologia Belle Arti e Paesaggio delle Marche -- Chapter_14_Open -- Chapter_15_Open -- Chapter_16_BibliographyOpen -- Dall'Aglio, P.L. and P. Campagnoli (eds) 2002. Sulle tracce del passato. Percorsi archeologici nella provincia di Pesaro e Urbino. Urbania: Arti Grafiche Stibu. -- Dall'Aglio, P.L., S. De Maria and A. Mariotti (eds) 1991. Archeologia delle valli marchigiane Misa, Nevola e Cesano. Perugia: Electa Editori Umbri. -- Dall'Aglio, P.L. and I. Di Cocco (eds) 2004. Pesaro romana: archeologia e urbanistica. Bologna: Ante Quem. -- Dall'Aglio, P.L., C. Franceschelli and C. Tassinari 2014. Prima considerazioni sulla città romana di Ostra alla luce dei nuovi scavi, in Baldelli and Lo Schiavo 2014: 829-848. 327 $aDall'Aglio P.L., C. Franceschelli, G. Roversi, O. Nesci, L. Pellegrini, D. Savelli 2019. Il sistema fognario della città romana di Ostra (Ostra Vetere, AN), in M Buora, S. Magnani (eds), I sistemi di smaltimento delle acque nel mondo antico. Antichità... -- Di Lorenzo, F. and E. Giorgi 2010. L'Edificio di Oceano, in Giorgi and Lepore 2010: 365-378. 330 $aThis volume presents a coherent collection of papers presented at an International Workshop (held in Ravenna, 13-14 May 2019) which focussed on the transition between Italic culture and Romanised society in the central Adriatic area - the regions ager Gallicus and Picenum under Roman dominance - from the fourth to the second centuries BCE. 606 $aPicenum 606 $aAger Gallicus 615 0$aPicenum. 615 0$aAger Gallicus. 676 $a937.45 700 $aBoschi$b Federica$0479358 701 $aGiorgi$b Enrico$0185790 701 $aVermeulen$b Frank$01255391 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910821799703321 996 $aPicenum and the Ager Gallicus at the Dawn of the Roman Conquest$94006207 997 $aUNINA