LEADER 02333oam 2200517I 450 001 9910821796103321 005 20230807204136.0 010 $a0-429-17179-X 010 $a981-4463-52-3 024 7 $a10.1201/b18439 035 $a(CKB)2670000000557211 035 $a(EBL)1538317 035 $a(SSID)ssj0001541165 035 $a(PQKBManifestationID)12012856 035 $a(PQKBTitleCode)TC0001541165 035 $a(PQKBWorkID)11534313 035 $a(PQKB)10600738 035 $a(MiAaPQ)EBC1538317 035 $a(OCoLC)914822313 035 $a(EXLCZ)992670000000557211 100 $a20180331h20152015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aThermoelectric materials $eadvances and applications /$fEnrique Macia-Barber 210 1$aBoca Raton, Florida :$cCRC Press,$d[2015] 210 4$dİ2015 215 $a1 online resource (355 p.) 300 $aDescription based upon print version of record. 311 $a981-4463-53-1 320 $aIncludes bibliographical references. 327 $aCover; Contents; Preface; Chapter 1: Basic Notions; Chapter 2: Fundamental Aspects; Chapter 3: The Structural Complexity Approach; Chapter 4: The Electronic Structure Role; Chapter 5: Beyond Periodic Order; Chapter 6: Organic Semiconductors and Polymers; Bibliography; Back Cover 330 $aEnvironmental and economic concerns have significantly spurred the search for novel, high-performance thermoelectric materials for energy conversion in small-scale power generation and refrigeration devices. This quest has been mainly fueled by the introduction of new designs and the synthesis of new materials. In fact, good thermoelectric materials must simultaneously exhibit extreme properties: they must have very low thermal conductivity values and both electrical conductivity and Seebeck coefficient high values as well. Since these transport coefficients are interrelated, the required task 606 $aThermoelectric materials 615 0$aThermoelectric materials. 676 $a621.31/243 676 $a621.31243 702 $aMacia-Barber$b Enrique 801 0$bFlBoTFG 801 1$bFlBoTFG 906 $aBOOK 912 $a9910821796103321 996 $aThermoelectric materials$94006172 997 $aUNINA