LEADER 01265nam 2200409 450 001 9910821165803321 005 20200520144314.0 010 0 $a1118809459 010 0 $a9781118809457 035 $a(MiAaPQ)EBC7104097 035 $a(CKB)24989779500041 035 $a(NjHacI)9924989779500041 035 $a(MiAaPQ)EBC1598820 035 $a(EXLCZ)9924989779500041 100 $a20140206h20142014 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMedical sciences at a glance $epractice workbook /$fJakub Scaber, Faisal Rahman, Peter Abrahams 210 1$aEast Sussex, England :$cJohn Wiley & Sons,$d2014. 210 4$d2014 215 $a1 online resource (164 pages) $cillustrations 320 $aIncludes bibliographical references and index. 606 $aMedical sciences$vExaminations, questions, etc 615 0$aMedical sciences 676 $a610.76 700 $aScaber$b Jakub$01630586 701 $aAbrahams$b Peter$0438660 701 $aRahman$b Faisal$01630587 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910821165803321 996 $aMedical sciences at a glance$93968971 997 $aUNINA LEADER 03074nam 22004455 450 001 9910350246503321 005 20200706214123.0 010 $a981-13-6500-8 024 7 $a10.1007/978-981-13-6500-3 035 $a(CKB)4100000008876702 035 $a(DE-He213)978-981-13-6500-3 035 $a(MiAaPQ)EBC5739656 035 $a(PPN)235230324 035 $a(EXLCZ)994100000008876702 100 $a20190320d2019 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSingular Integrals and Fourier Theory on Lipschitz Boundaries /$fby Tao Qian, Pengtao Li 205 $a1st ed. 2019. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2019. 215 $a1 online resource (XV, 306 p. 28 illus., 6 illus. in color.) 311 $a981-13-6499-0 327 $aSingular integrals and Fourier multipliers on infinite Lipschitz curves -- Singular integral operators on closed Lipschitz curves -- Clifford analysis, Dirac operator and the Fourier transform -- Convolution singular integral operators on Lipschitz surfaces -- Holomorphic Fourier multipliers on infinite Lipschitz surfaces -- Bounded holomorphic Fourier multipliers on closed Lipschitz surfaces -- The fractional Fourier multipliers on Lipschitz curves and surfaces -- Fourier multipliers and singular integrals on Cn. 330 $aThe main purpose of this book is to provide a detailed and comprehensive survey of the theory of singular integrals and Fourier multipliers on Lipschitz curves and surfaces, an area that has been developed since the 1980s. The subject of singular integrals and the related Fourier multipliers on Lipschitz curves and surfaces has an extensive background in harmonic analysis and partial differential equations. The book elaborates on the basic framework, the Fourier methodology, and the main results in various contexts, especially addressing the following topics: singular integral operators with holomorphic kernels, fractional integral and differential operators with holomorphic kernels, holomorphic and monogenic Fourier multipliers, and Cauchy-Dunford functional calculi of the Dirac operators on Lipschitz curves and surfaces, and the high-dimensional Fueter mapping theorem with applications. The book offers a valuable resource for all graduate students and researchers interested in singular integrals and Fourier multipliers. . 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 14$aAnalysis. 676 $a515 700 $aQian$b Tao$4aut$4http://id.loc.gov/vocabulary/relators/aut$0782104 702 $aLi$b Pengtao$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910350246503321 996 $aSingular Integrals and Fourier Theory on Lipschitz Boundaries$92507544 997 $aUNINA