LEADER 07254nam 22007093u 450 001 9910821121003321 005 20240402103601.0 010 $a1-118-84873-X 035 $a(CKB)2560000000147408 035 $a(EBL)1659273 035 $a(SSID)ssj0001212511 035 $a(PQKBManifestationID)11788048 035 $a(PQKBTitleCode)TC0001212511 035 $a(PQKBWorkID)11210777 035 $a(PQKB)11568791 035 $a(Au-PeEL)EBL7104138 035 $a(CaSebORM)9781118848739 035 $a(MiAaPQ)EBC1659273 035 $a(MiAaPQ)EBC7104138 035 $a(EXLCZ)992560000000147408 100 $a20140407d2014|||| u|| | 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 12$aA Practical Introduction to Computer Vision with OpenCV 205 $a1st edition 210 $aHoboken $cWiley$d2014 215 $a1 online resource (235 p.) 225 1 $aNew York Academy of Sciences 300 $aDescription based upon print version of record. 311 $a1-118-84845-4 320 $aIncludes bibliographical references and index. 327 $aA Practical Introduction to Computer Vision with OpenCV; Contents; Preface; 1 Introduction; 1.1 A Difficult Problem; 1.2 The Human Vision System; 1.3 Practical Applications of Computer Vision; 1.4 The Future of Computer Vision; 1.5 Material in This Textbook; 1.6 Going Further with Computer Vision; 2 Images; 2.1 Cameras; 2.1.1 The Simple Pinhole Camera Model; 2.2 Images; 2.2.1 Sampling; 2.2.2 Quantisation; 2.3 Colour Images; 2.3.1 Red-Green-Blue (RGB) Images; 2.3.2 Cyan-Magenta-Yellow (CMY) Images; 2.3.3 YUV Images; 2.3.4 Hue Luminance Saturation (HLS) Images; 2.3.5 Other Colour Spaces 327 $a2.3.6 Some Colour Applications2.4 Noise; 2.4.1 Types of Noise; 2.4.2 Noise Models; 2.4.3 Noise Generation; 2.4.4 Noise Evaluation; 2.5 Smoothing; 2.5.1 Image Averaging; 2.5.2 Local Averaging and Gaussian Smoothing; 2.5.3 Rotating Mask; 2.5.4 Median Filter; 3 Histograms; 3.1 1D Histograms; 3.1.1 Histogram Smoothing; 3.1.2 Colour Histograms; 3.2 3D Histograms; 3.3 Histogram/Image Equalisation; 3.4 Histogram Comparison; 3.5 Back-projection; 3.6 k-means Clustering; 4 Binary Vision; 4.1 Thresholding; 4.1.1 Thresholding Problems; 4.2 Threshold Detection Methods; 4.2.1 Bimodal Histogram Analysis 327 $a4.2.2 Optimal Thresholding4.2.3 Otsu Thresholding; 4.3 Variations on Thresholding; 4.3.1 Adaptive Thresholding; 4.3.2 Band Thresholding; 4.3.3 Semi-thresholding; 4.3.4 Multispectral Thresholding; 4.4 Mathematical Morphology; 4.4.1 Dilation; 4.4.2 Erosion; 4.4.3 Opening and Closing; 4.4.4 Grey-scale and Colour Morphology; 4.5 Connectivity; 4.5.1 Connectedness: Paradoxes and Solutions; 4.5.2 Connected Components Analysis; 5 Geometric Transformations; 5.1 Problem Specification and Algorithm; 5.2 Affine Transformations; 5.2.1 Known Affine Transformations; 5.2.2 Unknown Affine Transformations 327 $a5.3 Perspective Transformations5.4 Specification of More Complex Transformations; 5.5 Interpolation; 5.5.1 Nearest Neighbour Interpolation; 5.5.2 Bilinear Interpolation; 5.5.3 Bi-Cubic Interpolation; 5.6 Modelling and Removing Distortion from Cameras; 5.6.1 Camera Distortions; 5.6.2 Camera Calibration and Removing Distortion; 6 Edges; 6.1 Edge Detection; 6.1.1 First Derivative Edge Detectors; 6.1.2 Second Derivative Edge Detectors; 6.1.3 Multispectral Edge Detection; 6.1.4 Image Sharpening; 6.2 Contour Segmentation; 6.2.1 Basic Representations of Edge Data; 6.2.2 Border Detection 327 $a6.2.3 Extracting Line Segment Representations of Edge Contours6.3 Hough Transform; 6.3.1 Hough for Lines; 6.3.2 Hough for Circles; 6.3.3 Generalised Hough; 7 Features; 7.1 Moravec Corner Detection; 7.2 Harris Corner Detection; 7.3 FAST Corner Detection; 7.4 SIFT; 7.4.1 Scale Space Extrema Detection; 7.4.2 Accurate Keypoint Location; 7.4.3 Keypoint Orientation Assignment; 7.4.4 Keypoint Descriptor; 7.4.5 Matching Keypoints; 7.4.6 Recognition; 7.5 Other Detectors; 7.5.1 Minimum Eigenvalues; 7.5.2 SURF; 8 Recognition; 8.1 Template Matching; 8.1.1 Applications; 8.1.2 Template Matching Algorithm 327 $a8.1.3 Matching Metrics 330 $aExplains the theory behind basic computer vision and provides a bridge from the theory to practical implementation using the industry standard. OpenCV libraries Computer Vision is a rapidly expanding area and it is becoming progressively easier for developers to make use of this field due to the ready availability of high quality libraries (such as OpenCV 2). This text is intended to facilitate the practical use of computer vision with the goal being to bridge the gap between the theory and the practical implementation of computer vision. The book will explain how to use the relevant OpenCV library routines and will be accompanied by a full working program including the code snippets from the text. This textbook is a heavily illustrated, practical introduction to an exciting field, the applications of which are becoming almost ubiquitous. We are now surrounded by cameras, for example cameras on computers & tablets/ cameras built into our mobile phones/ cameras in games consoles; cameras imaging difficult modalities (such as ultrasound, X-ray, MRI) in hospitals, and surveillance cameras. This book is concerned with helping the next generation of computer developers to make use of all these images in order to develop systems which are more intuitive and interact with us in more intelligent ways. Explains the theory behind basic computer vision and provides a bridge from the theory to practical implementation using the industry standard. OpenCV libraries offers an introduction to computer vision, with enough theory to make clear how the various algorithms work but with an emphasis on practical programming issues. Provides enough material for a one semester course in computer vision at senior undergraduate and Masters levels. Includes the basics of cameras and images and image processing to remove noise, before moving on to topics such as image histogramming; binary imaging; video processing to detect and model moving objects; geometric operations & camera models; edge detection; features detection; recognition in images. Contains a large number of vision application problems to provide students with the opportunity to solve real problems. Images or videos for these problems are provided in the resources associated with this book. 410 0$aNew York Academy of Sciences 606 $aComputer vision$xComputer programs 606 $aComputer vision 606 $aEngineering & Applied Sciences$2HILCC 606 $aApplied Physics$2HILCC 615 0$aComputer vision$xComputer programs 615 0$aComputer vision 615 7$aEngineering & Applied Sciences 615 7$aApplied Physics 676 $a006.3/7 676 $a006.37 686 $aCOM016000$2bisacsh 700 $aDawson-Howe$b Kenneth$01660683 702 $aDawson-Howe$b Kenneth 801 0$bAU-PeEL 801 1$bAU-PeEL 801 2$bAU-PeEL 906 $aBOOK 912 $a9910821121003321 996 $aA Practical Introduction to Computer Vision with OpenCV$94016057 997 $aUNINA