LEADER 00816nam0-22002651i-450- 001 990002648840403321 035 $a000264884 035 $aFED01000264884 035 $a(Aleph)000264884FED01 035 $a000264884 100 $a20000920d1979----km-y0itay50------ba 101 1$aENG 200 1 $aDiversification through acquisition.Strategies for creating economic value$fby Salte r and Weinhold 210 $aNew York$cThe Free Press$d1979 215 $ain 9 pp. 330 700 1$aSalter,$bMalcom S.$0374354 702 1$aWeinhold,$bWolf A. 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990002648840403321 952 $a0-9-49-TI$b5279$fECA 959 $aECA 996 $aDiversification through acquisition.Strategies for creating economic value$9430878 997 $aUNINA DB $aING01 LEADER 03139nam 2200589 450 001 9910820405703321 005 20180731043559.0 010 $a1-4704-0329-3 035 $a(CKB)3360000000464920 035 $a(EBL)3114546 035 $a(SSID)ssj0000973220 035 $a(PQKBManifestationID)11582510 035 $a(PQKBTitleCode)TC0000973220 035 $a(PQKBWorkID)10959861 035 $a(PQKB)11370972 035 $a(MiAaPQ)EBC3114546 035 $a(RPAM)12501775 035 $a(PPN)195416228 035 $a(EXLCZ)993360000000464920 100 $a20010814h20022002 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHomotopy theory of diagrams /$fWojciech Chacho?lski, Je?ro?me Scherer 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2002] 210 4$dİ2002 215 $a1 online resource (106 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 736 300 $aDescription based upon print version of record. 311 $a0-8218-2759-6 320 $aIncludes bibliographical references (pages 87-88) and index. 327 $a""Contents""; ""Introduction""; ""Chapter I. Model approximations and bounded diagrams""; ""1. Notation""; ""2. Model categories""; ""3. Left derived functors""; ""4. Left derived functors of colimits and left Kan extensions""; ""5. Model approximations""; ""6. Spaces and small categories""; ""7. The pull-back process and local properties""; ""8. Colimits of diagrams indexed by spaces""; ""9. Left Kan extensions""; ""10. Bounded diagrams""; ""Chapter II. Homotopy theory of diagrams""; ""11. Statements of the main results""; ""12. Cofibrations""; ""13. Fun[sup(b)](K,M) as a model category"" 327 $a""28. Diagrams indexed by cones II""""30. Cofinality""; ""31. Homotopy limits""; ""Appendix A. Left Kan extensions preserve boundedness""; ""32. Degeneracy Map""; ""33. Bounded diagrams and left Kan extensions""; ""Appendix B. Categorical Preliminaries""; ""34. Categories over and under an object""; ""35. Relative version of categories over and under an object""; ""36. Pull-back process and Kan extensions""; ""37. Cofinality for colimits""; ""38. Grothendieck construction""; ""39. Grothendieck construction & the pull-back process""; ""40. Functors indexed by Grothendieck constructions"" 327 $a""Bibliography""""Index""; ""A""; ""B""; ""C""; ""D""; ""F""; ""G""; ""H""; ""I""; ""K""; ""L""; ""M""; ""N""; ""O""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""W"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 736. 606 $aHomotopy theory 606 $aCategories (Mathematics) 615 0$aHomotopy theory. 615 0$aCategories (Mathematics) 676 $a510 s 676 $a514/.24 700 $aChacho?lski$b Wojciech$f1968-$01714353 702 $aScherer$b Je?ro?me$f1969- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910820405703321 996 $aHomotopy theory of diagrams$94108103 997 $aUNINA