LEADER 02851nam 2200601 450 001 9910820402003321 005 20170816143301.0 010 $a1-4704-0270-X 035 $a(CKB)3360000000464863 035 $a(EBL)3114510 035 $a(SSID)ssj0000889011 035 $a(PQKBManifestationID)11456901 035 $a(PQKBTitleCode)TC0000889011 035 $a(PQKBWorkID)10875506 035 $a(PQKB)11654232 035 $a(MiAaPQ)EBC3114510 035 $a(RPAM)11817673 035 $a(PPN)195415639 035 $a(EXLCZ)993360000000464863 100 $a19991022h20002000 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aInverses of disjointness preserving operators /$fY.A. Abramovich, A.K. Kitover 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2000] 210 4$dİ2000 215 $a1 online resource (178 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 679 300 $a"January 2000, volume 143, number 679 (first of 4 numbers)." 311 $a0-8218-1397-8 320 $aIncludes bibliographical references (pages 158-162). 327 $a""Table of Contents""; ""1. Setting forth the problems""; ""2. Some history""; ""3. Synopsis of the main results""; ""4. Preliminaries""; ""5. The McPolina???Wickstead and Huijsmansa???de Pagtera???Koldunov Theorems revisited""; ""6. d-bases""; ""7. Band preserving operators and band-projections""; ""8. Central operators and Problems A and B""; ""9. Range-domain exchange in the Huijsmansa???de Pagtera???Koldunov Theorem""; ""10. d-splitting number of disjointness preserving operators""; ""11. Essentially one-dimensional and discrete vector lattices"" 327 $a""12. Essentially constant functions and operators on C[0,1]""""13. Counterexamples""; ""14. Dedekind complete vector lattices and Problems A and B""; ""15. Generalizations to (r[sub(u)])-complete vector lattices""; ""16. Open problems""; ""References""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""H""; ""I""; ""L""; ""M""; ""N""; ""O""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W""; ""X""; ""Z"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 679. 606 $aBanach modules (Algebra) 606 $aOperator theory 606 $aBanach lattices 615 0$aBanach modules (Algebra) 615 0$aOperator theory. 615 0$aBanach lattices. 676 $a510 s 676 $a512/.55 700 $aAbramovich$b Y. A$g(Yuri A.),$01714340 702 $aKitover$b A. K$g(Arkady K.), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910820402003321 996 $aInverses of disjointness preserving operators$94108068 997 $aUNINA