LEADER 01490nam0-2200433---450 001 990005722220203316 005 20200826160230.0 035 $a000572222 035 $aUSA01000572222 035 $a(ALEPH)000572222USA01 035 $a000572222 100 $a20070716d1974----|||y0itaa50------ba 101 $afre 102 $afr 105 $a0 00||| 200 1 $a<> aventure chevaleresque$eidéal et réalité dans le roman courtois$eétudes sur la forme des plus anciens poèmes d'Arthur et du Graal$fErich Kohler$gtraduit de l'allemand par Eliane Kaufholz$gpréface de Jacques Le Goff 210 $aParis$cGallimard$dc1974 215 $aXXI, 318 p.$d23 cm 225 2 $aBibliothèque des idées 300 $aTit. orig.: Ideal und Wirklichkeit in der hofischen Epik. 410 0$12001$aBibliothèque des idées 606 $aROMANZI CAVALLERESCHI FRANCESI$2F 620 $dPARIS 676 $a843.1 700 1$aKOHLER,$bErich$0394035 702 1$aLE GOFF,$bJacques$f<1924-2014 > 702 1$aKAUFHOLZ,$bEliane 801 0$aIT$bSA$c20111219 912 $a990005722220203316 950 0$aDipar.to di Filosofia - Salerno$dDFCC 843.1 KOH$e716 FIL 951 $aCC 843.1 KOH$b716 FIL 959 $aBK 969 $aFIL 979 $c20121027$lUSA01$h1526 979 $c20121027$lUSA01$h1615 979 $aANNAMARIA$b90$c20131203$lUSA01$h1146 979 $aANNAMARIA$b90$c20140502$lUSA01$h1311 996 $aAventure chevaleresque$9532975 997 $aUNISA LEADER 03706nam 2200697 450 001 9910820376703321 005 20210512235919.0 010 $a3-11-038129-X 010 $a3-11-027564-3 024 7 $a10.1515/9783110275643 035 $a(CKB)3710000000461746 035 $a(EBL)1787099 035 $a(SSID)ssj0001531232 035 $a(PQKBManifestationID)12639607 035 $a(PQKBTitleCode)TC0001531232 035 $a(PQKBWorkID)11533200 035 $a(PQKB)10211360 035 $a(DE-B1597)174868 035 $a(OCoLC)919182882 035 $a(OCoLC)919338525 035 $a(DE-B1597)9783110275643 035 $a(Au-PeEL)EBL1787099 035 $a(CaPaEBR)ebr11087975 035 $a(CaONFJC)MIL821110 035 $a(CaSebORM)9783110381290 035 $a(MiAaPQ)EBC1787099 035 $a(EXLCZ)993710000000461746 100 $a20150820h20152015 uy 0 101 0 $aeng 135 $aurun#---|u||u 181 $ctxt 182 $cc 183 $acr 200 10$aRecursion theory $ecomputational aspects of definability /$fChi Tat Chong, Liang Yu 210 1$aBerlin, [Germany] ;$aBoston, [Massachusetts] :$cDe Gruyter,$d2015. 210 4$d©2015 215 $a1 online resource (322 p.) 225 1 $aDe Gruyter Series in Logic and Its Applications,$x1438-1893 ;$vVolume 8 300 $aDescription based upon print version of record. 311 $a3-11-027555-4 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tPreface --$tContents --$tPart I: Fundamental theory --$t1 An introduction to higher recursion theory --$t2 Hyperarithmetic theory --$t3 Admissibility and constructibility --$t4 The theory of ?1 1-sets --$t5 Recursion-theoretic forcing --$t6 Set theory --$tPart II: The story of Turing degrees --$t7 Classification of jump operators --$t8 The construction of ?1 1-sets --$t9 Independence results in recursion theory --$tPart III: Hyperarithmetic degrees and perfect set property --$t10 Rigidity and bi-interpretability of hyperdegrees --$t11 Basis theorems --$tPart IV: Higher randomness theory --$t12 Review of classical algorithmic randomness --$t13 More on hyperarithmetic theory --$t14 The theory of higher randomness --$tA Open problems --$tB An interview with Gerald E. Sacks --$tC Notations and symbols --$tBibliography --$tIndex --$tBackmatter 330 $aThis monograph presents recursion theory from a generalized point of view centered on the computational aspects of definability. A major theme is the study of the structures of degrees arising from two key notions of reducibility, the Turing degrees and the hyperdegrees, using techniques and ideas from recursion theory, hyperarithmetic theory, and descriptive set theory. The emphasis is on the interplay between recursion theory and set theory, anchored on the notion of definability. The monograph covers a number of fundamental results in hyperarithmetic theory as well as some recent results on the structure theory of Turing and hyperdegrees. It also features a chapter on the applications of these investigations to higher randomness. 410 0$aDe Gruyter series in logic and its applications ;$vVolume 8. 606 $aRecursion theory 610 $aHigher Randomness. 610 $aHyperdegrees. 610 $aJump Operator. 610 $aRecursion Theory. 610 $aTuring Degrees. 615 0$aRecursion theory. 676 $a511.3/5 700 $aChong$b C.-T$g(Chi-Tat),$f1949-$0441174 702 $aYu$b Liang 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910820376703321 996 $aRecursion theory$93972996 997 $aUNINA