LEADER 02771nam 22006492 450 001 9910819836803321 005 20160201060152.0 010 $a1-107-23875-7 010 $a1-139-56537-0 010 $a1-107-25591-0 010 $a1-107-30198-X 010 $a1-107-30707-4 010 $a1-299-27638-5 010 $a1-107-31262-0 010 $a1-107-30927-1 010 $a1-107-31482-8 035 $a(CKB)2670000000333362 035 $a(EBL)1113121 035 $a(OCoLC)828302496 035 $a(SSID)ssj0000850079 035 $a(PQKBManifestationID)11455537 035 $a(PQKBTitleCode)TC0000850079 035 $a(PQKBWorkID)10826000 035 $a(PQKB)11002258 035 $a(UkCbUP)CR9781139565370 035 $a(MiAaPQ)EBC1113121 035 $a(Au-PeEL)EBL1113121 035 $a(CaPaEBR)ebr10655826 035 $a(CaONFJC)MIL458888 035 $a(PPN)17697623X 035 $a(EXLCZ)992670000000333362 100 $a20120718d2013|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMathematical modelling in one dimension $ean introduction via difference and differential equations /$fJacek Banasiak$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2013. 215 $a1 online resource (x, 110 pages) $cdigital, PDF file(s) 225 1 $aAIMS library series 300 $aTitle from publisher's bibliographic system (viewed on 01 Feb 2016). 311 $a1-107-65468-8 320 $aIncludes bibliographical references and index. 327 $aMathematical toolbox -- Basic difference equations models and their analysis -- Basic differential equations models -- Qualitative theory for a single equation -- From discrete to continuous models and back. 330 $aMathematical Modelling in One Dimension demonstrates the universality of mathematical techniques through a wide variety of applications. Learn how the same mathematical idea governs loan repayments, drug accumulation in tissues or growth of a population, or how the same argument can be used to find the trajectory of a dog pursuing a hare, the trajectory of a self-guided missile or the shape of a satellite dish. The author places equal importance on difference and differential equations, showing how they complement and intertwine in describing natural phenomena. 410 0$aAIMS library series. 606 $aMathematical models 615 0$aMathematical models. 676 $a511/.8 700 $aBanasiak$b J.$0314207 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910819836803321 996 $aMathematical modelling in one dimension$93992299 997 $aUNINA