LEADER 05516nam 2200661 450 001 9910819717303321 005 20230707220105.0 010 $a1-118-64933-8 010 $a1-118-64934-6 035 $a(CKB)2550000001277689 035 $a(EBL)1676651 035 $a(SSID)ssj0001217382 035 $a(PQKBManifestationID)11714656 035 $a(PQKBTitleCode)TC0001217382 035 $a(PQKBWorkID)11202025 035 $a(PQKB)11033023 035 $a(MiAaPQ)EBC1676651 035 $a(Au-PeEL)EBL1676651 035 $a(CaPaEBR)ebr10862703 035 $a(CaONFJC)MIL599753 035 $a(OCoLC)878552766 035 $a(EXLCZ)992550000001277689 100 $a20140501h20142014 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAcoustic particle velocity measurements using laser $eprinciples, signal processing and applications /$fJean-Christophe Valie?re 210 1$aLondon, England ;$aHoboken, New Jersey :$cISTE Ltd :$cJohn Wiley & Sons,$d2014. 210 4$dİ2014 215 $a1 online resource (157 p.) 225 1 $aFocus Series,$x2051-249X 300 $aDescription based upon print version of record. 311 $a1-84821-562-2 311 $a1-306-68502-8 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Contents; Preface; Chapter 1. Summary Of Acoustic Equations; 1.1. Basic equations; 1.1.1. Fluid- and thermodynamics; 1.1.2. Hypothesis of linear acoustics without losses; 1.2. Acoustic equations; 1.2.1. Linear acoustic equations with sources; 1.2.2. Some remarks on acoustic sources; 1.2.3. Without sources; 1.2.4. Acoustic intensity and source power; 1.2.5. Acoustic impedance and border conditions; 1.3. Constants, units and magnitude orders of linear acoustics; 1.4. Acoustic velocity measurement and applications; 1.4.1. Velocity estimation from pressure gradient 327 $a1.4.2. Intensity estimation 1.4.3. Application to impedance estimation; 1.5. Beyond linear equations; 1.5.1. Acoustic equations with mean flow; 1.5.2. High acoustic displacement; 1.5.3. Acoustic streaming; 1.6. Bibliography; Chapter 2. Some Topics On Signal Processing; 2.1. Measurement signal; 2.1.1. Random signals; 2.1.2. Statistical averages; 2.1.3. Time averages; 2.1.4. Acoustic signal model; 2.2. Reminder of Fourier analysis tools; 2.2.1. Fourier transform; 2.2.2. Uniform sampling and recovery of signals; 2.2.3. Fourier transform of discrete signals; 2.2.4. Discrete Fourier transform 327 $a2.3. Correlations and spectra 2.3.1. Definitions; 2.3.2. Stationary and ergodic process; 2.3.3. Properties of correlation functions and examples; 2.3.4. PSD and cross-spectral density properties; 2.4. Basis of estimation theory; 2.4.1. Definition and properties of an estimation method; 2.4.2. Mean estimator; 2.4.3. Correlation estimators; 2.4.4. Spectrum estimators; 2.4.5. Spectrum estimator by synchronous detection approach; 2.5. Non-uniform sampling; 2.5.1. Poisson processes; 2.5.2. Empirical estimators; 2.5.3. Comparison of spectrum estimation of random sampling sequences; 2.6. Bibliography 327 $a2.7. Appendix 2.7.1. Properties of the Fourier transform; 2.7.2. Fourier transforms of typical functions; 2.7.3. Properties of the discrete Fourier transform (DFT); Chapter 3. Ldv For Acoustics; 3.1. Bases of LDV; 3.1.1. Optical principles; 3.1.2. Signal processing of burst analyses in the context of fluid mechanics; 3.2. Models for acoustics; 3.2.1. Model of the Doppler signal; 3.2.2. Model of the sampling in the context of acoustics; 3.2.3. Case of low acoustic displacement with few mean flows; 3.2.4. Case of high acoustic displacement with few mean flows; 3.2.5. Other cases 327 $a3.3. Estimation method for low acoustic displacement 3.3.1. Theoretical limitations; 3.3.2. Estimation methods based on IF detection; 3.3.3. Estimation based on parametrical models; 3.3.4. Simultaneous detection of flow velocity and small acoustic velocity; 3.3.5. Comparison between methods for low-level acoustics; 3.4. Estimation method for high displacement; 3.4.1. Experimental condition; 3.4.2. Theoretical limitations; 3.4.3. Estimation for SPP; 3.4.4. Estimation for highly NSPP; 3.5. Bibliography; Chapter 4. Piv For Acoustics; 4.1. Principle of PIV; 4.1.1. Setting up 327 $a4.1.2. Model of the 2D signal and image processing 330 $aThis book concerns the presentation of particle velocity measurement for acoustics using lasers, including Laser Doppler Velocimetry (LDV or Anemometry (LDA)) and Particle Imagery Velocimetry (PIV).The objective is first to present the importance of measuring the acoustic velocity, especially when the acoustic equations are nonlinear as well as characterizing the near fields. However, these applications need to use non-invasive sensors. Some optical techniques, initially developed for fluid mechanics, have been adapted to the field of acoustics in recent years. This book summarizes 15 410 0$aFocus series (London, England) 606 $aSound$xMeasurement 606 $aElectro-acoustics$vCongresses 615 0$aSound$xMeasurement. 615 0$aElectro-acoustics 676 $a534.42 700 $aValie?re$b Jean-Christophe$01611915 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910819717303321 996 $aAcoustic particle velocity measurements using laser$93940396 997 $aUNINA