LEADER 05298nam 2200637Ia 450 001 9910819421703321 005 20240314020746.0 010 $a3-527-65279-5 010 $a3-527-65277-9 010 $a3-527-65280-9 035 $a(CKB)2670000000403541 035 $a(EBL)1322595 035 $a(OCoLC)854521453 035 $a(SSID)ssj0001034949 035 $a(PQKBManifestationID)11545118 035 $a(PQKBTitleCode)TC0001034949 035 $a(PQKBWorkID)11029472 035 $a(PQKB)11725459 035 $a(MiAaPQ)EBC1322595 035 $a(Au-PeEL)EBL1322595 035 $a(CaPaEBR)ebr10738058 035 $a(PPN)258723270 035 $a(EXLCZ)992670000000403541 100 $a20130802d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aCoherent laser beam combining$b[electronic resource] /$fedited by Arnaud Brignon 205 $a1st ed. 210 $aWeinheim $cWiley-VCH$dc2013 215 $a1 online resource (509 p.) 300 $aDescription based upon print version of record. 311 $a3-527-41150-X 320 $aIncludes bibliographical references and index. 327 $aCoherent Laser Beam Combining; Contents; Preface; Acronyms; List of Contributors; Part One: Coherent Combining with Active Phase Control; 1 Engineering of Coherently Combined, High-Power Laser Systems; 1.1 Introduction; 1.2 Coherent Beam Combining System Requirements; 1.3 Active Phase-Locking Controls; 1.3.1 Optical Heterodyne Detection; 1.3.2 Synchronous Multidither; 1.3.3 Hill Climbing; 1.4 Geometric Beam Combining; 1.4.1 Tiled Aperture Combiners; 1.4.2 Filled Aperture Combiners Using Diffractive Optical Elements; 1.4.2.1 Overview of DOE Combiners; 1.4.2.2 DOE Design and Fabrication 327 $a1.4.2.3 DOE Thermal and Spectral Sensitivity1.5 High-Power Coherent Beam Combining Demonstrations; 1.5.1 Coherent Beam Combining of Zigzag Slab Lasers; 1.5.2 Coherent Beam Combining of Fiber Lasers; 1.5.2.1 Phase Locking of Nonlinear Fiber Amplifiers; 1.5.2.2 Path Length Matching with Broad Linewidths; 1.5.2.3 Diffractive CBC of High-Power Fibers; 1.5.2.4 CBC of Tm Fibers at 2 ?m; 1.6 Conclusion; Acknowledgments; References; 2 Coherent Beam Combining of Fiber Amplifiers via LOCSET; 2.1 Introduction; 2.1.1 Beam Combination Architectures; 2.1.2 Active and Passive Coherent Beam Combining 327 $a2.2 Locking of Optical Coherence by Single-Detector Electronic-Frequency Tagging2.2.1 LOCSET Theory; 2.2.2 Self-Referenced LOCSET; 2.2.2.1 Photocurrent Signal; 2.2.2.2 LOCSET Demodulation; 2.2.3 Self-Synchronous LOCSET; 2.3 LOCSET Phase Error and Channel Scalability; 2.3.1 LOCSET Beam Combining and Phase Error Analysis; 2.3.2 In-Phase and Quadrature-Phase Error Analysis; 2.3.3 Two-Channel Beam Combining; 2.3.4 16-Channel Beam Combining; 2.3.5 32-Channel Beam Combining; 2.4 LOCSET High-Power Beam Combining; 2.4.1 Kilowatt-Scale Coherent Beam Combining of Silica Fiber Lasers 327 $a2.4.2 Kilowatt-Scale Coherent Beam Combining of Photonic Crystal Fiber Amplifiers2.5 Conclusion; References; 3 Kilowatt Coherent Beam Combining of High-Power Fiber Amplifiers Using Single-Frequency Dithering Techniques; 3.1 Introduction; 3.1.1 Brief History of Coherent Beam Combining; 3.1.2 Coherent Beam Combining: State of the Art; 3.1.3 Key Technologies for Coherent Beam Combining; 3.2 Single-Frequency Dithering Technique; 3.2.1 Theory of Single-Frequency Dithering Technique; 3.2.2 Kilowatt Coherent Beam Combining of High-Power Fiber Amplifiers Using Single- Frequency Dithering Technique 327 $a3.2.3 Coherent Polarization Beam Combining of Four High-Power Fiber Amplifiers Using Single-Frequency Dithering Technique3.2.4 Target-in-the-Loop Coherent Beam Combination of Fiber Lasers Based on Single- Frequency Dithering Technique; 3.3 Sine-Cosine Single-Frequency Dithering Technique; 3.3.1 Theory of Sine-Cosine Single-Frequency Dithering Technique; 3.3.2 Coherent Beam Combining of Nine Beams Using Sine-Cosine Single-Frequency Dithering Technique; 3.4 Summary; References; 4 Active Coherent Combination Using Hill Climbing-Based Algorithms for Fiber and Semiconductor Amplifiers 327 $a4.1 Introduction to Hill Climbing Control Algorithms for Active Phase Control 330 $aRecently, the improvement of diode pumping in solid state lasers and the development of double clad fiber lasers have allowed to maintain excellent laser beam quality with single mode fibers. However, the fiber output power if often limited below a power damage threshold. Coherent laser beam combining (CLBC) brings a solution to these limitations by identifying the most efficient architectures and allowing for excellent spectral and spatial quality. This knowledge will become critical for the design of the next generation high-power lasers and is of major interest to many industrial, environme 606 $aNonlinear optics 606 $aLaser beams 615 0$aNonlinear optics. 615 0$aLaser beams. 676 $a539.7 701 $aBrignon$b Arnaud$01601153 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910819421703321 996 $aCoherent laser beam combining$93924626 997 $aUNINA