LEADER 03487nam 2200601 450 001 9910819084903321 005 20170822144212.0 010 $a1-4704-0625-X 035 $a(CKB)3360000000465192 035 $a(EBL)3114247 035 $a(SSID)ssj0000889164 035 $a(PQKBManifestationID)11452888 035 $a(PQKBTitleCode)TC0000889164 035 $a(PQKBWorkID)10881944 035 $a(PQKB)11101893 035 $a(MiAaPQ)EBC3114247 035 $a(RPAM)16932269 035 $a(PPN)195418972 035 $a(EXLCZ)993360000000465192 100 $a20150416h20112011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aQuasi-actions on trees II $efinite depth Bass-Serre trees /$fLee Mosher, Michah Sageev, Kevin Whyte 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2011. 210 4$dİ2011 215 $a1 online resource (105 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vNumber 1008 300 $a"November 2011, volume 214, number 1008 (fourth of 5 numbers)." 311 $a0-8218-4712-0 320 $aIncludes bibliographical references and index. 327 $a""Contents""; ""Chapter 1. Introduction""; ""1.1. Example applications""; ""1.2. The methods of proof: a special case""; ""1.3. The general setting""; ""1.4. Statements of results""; ""1.5. Structure of the paper""; ""Chapter 2. Preliminaries""; ""2.1. Coarse language""; ""2.2. Coarse properties of subgroups""; ""2.3. Coboundedness principle""; ""2.4. Bass-Serre trees and Bass-Serre complexes""; ""2.5. Irreducible graphs of groups""; ""2.6. Coarse PD(n) spaces and groups""; ""2.7. The methods of proof: the general case""; ""Chapter 3. Depth Zero Vertex Rigidity"" 327 $a""3.1. A sufficient condition for depth zero vertex rigidity""""3.2. Proof of the Depth Zero Vertex Rigidity Theorem""; ""Chapter 4. Finite Depth Graphs of Groups""; ""4.1. Definitions and examples""; ""4.2. Proof of the Vertexa???Edge Rigidity Theorem 2.11""; ""4.3. Reduction of finite depth graphs of groups""; ""Chapter 5. Tree Rigidity""; ""5.1. Examples and motivations""; ""5.2. Outline of the Tree Rigidity Theorem""; ""5.3. Special case: isolated edge spaces""; ""5.4. Special case: all edges have depth one""; ""5.4.1. Proof of Lemma 5.5: an action on a 2-complex"" 327 $a""5.4.2. Proof of the Tracks Theorem 5.7""""5.5. Proof of the Tree Rigidity Theorem""; ""Chapter 6. Main Theorems""; ""Chapter 7. Applications and Examples""; ""7.1. Patterns of edge spaces in a vertex space""; ""7.2. Hn vertex groups and Z edge groups""; ""7.3. H3 vertex groups and surface fiber edge groups""; ""7.4. Surface vertex groups and cyclic edge groups""; ""7.5. Graphs of abelian groups""; ""7.6. Quasi-isometry groups and classification""; ""Bibliography""; ""Index"" 410 0$aMemoirs of the American Mathematical Society ;$vNumber 1008. 517 3 $aQuasi-actions on trees 2 606 $aGeometric group theory 606 $aRigidity (Geometry) 615 0$aGeometric group theory. 615 0$aRigidity (Geometry) 676 $a512/.2 700 $aMosher$b Lee$f1957-$01714497 702 $aSageev$b Michah$f1966- 702 $aWhyte$b Kevin$f1970- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910819084903321 996 $aQuasi-actions on trees II$94108371 997 $aUNINA