LEADER 00990nam0-2200337---450- 001 990008649200403321 005 20081003105730.0 010 $a88-221-0117-0 035 $a000864920 035 $aFED01000864920 035 $a(Aleph)000864920FED01 035 $a000864920 100 $a20080418d1984----km-y0itaa50------ba 101 0 $aita 102 $aIT 105 $ay-------101yy 200 1 $a<>scuola dell'infanzia verso il 2000$eatti del Convegno, Ancona, 5-7 maggio 1984$fa cura di Piero Bertolini 210 $aFirenze$cLa Nuova Italia$d1984 215 $aXIII, 199 p.$d21 cm 225 1 $aDidattica viva$v78 300 $aristampa 1987 610 0 $aScuola materna$aProgrammi 676 $a372.19$v21$zita 702 1$aBertolini,$bPiero 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008649200403321 952 $a372.19 BER 1$bBibl. 1289$fFLFBC 959 $aFLFBC 996 $aScuola dell'infanzia verso il 2000$9716310 997 $aUNINA LEADER 02951nam 2200601 450 001 9910819074303321 005 20200811234444.0 010 $a1-4704-1061-3 035 $a(CKB)3780000000000235 035 $a(EBL)3114197 035 $a(SSID)ssj0001034820 035 $a(PQKBManifestationID)11599948 035 $a(PQKBTitleCode)TC0001034820 035 $a(PQKBWorkID)11027469 035 $a(PQKB)11337774 035 $a(MiAaPQ)EBC3114197 035 $a(RPAM)17790396 035 $a(PPN)195408454 035 $a(EXLCZ)993780000000000235 100 $a20150417h20132013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIsolated involutions in finite groups /$fRebecca Waldecker 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2013. 210 4$dİ2013 215 $a1 online resource (164 p.) 225 1 $aMemoirs of the American Mathematical Society,$x1947-6221 ;$vVolume 226, Number 1061 300 $a"Volume 226, Number 1061 (second of 5 numbers)." 311 $a0-8218-8803-X 320 $aIncludes bibliographical references and index. 327 $a""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Preliminaries""; ""2.1. Definitions and Notation""; ""2.2. General Results""; ""2.3. A Nilpotent Action Result""; ""Chapter 3. Isolated Involutions""; ""Chapter 4. A Minimal Counter-Example to Glaubermana???s Z*-Theorem""; ""Chapter 5. Balance and Signalizer Functors""; ""Chapter 6. Preparatory Results for the Local Analysis""; ""6.1. The Bender Method""; ""6.2. -Minimal Subgroups, Pushing Down and Uniqueness Results""; ""Chapter 7. Maximal Subgroups Containing ""; ""Chapter 8. The 2-rank of _{2a???,2}( )"" 327 $a""8.1. Involutions in _{2a???,2}( )\{ }""""8.2. The Proof of Theorem B""; ""Chapter 9. Components of \overline{ } and the Soluble Z*-Theorem""; ""Chapter 10. Unbalanced Components""; ""Chapter 11. The 2-Rank of ""; ""Chapter 12. The F*-Structure Theorem""; ""Chapter 13. More Involutions""; ""13.1. Preliminary Results""; ""13.2. The Symmetric Case""; ""13.3. The General Case""; ""Chapter 14. The Endgame""; ""Chapter 15. The Final Contradiction and the Z*-Theorem for a???-Groups""; ""Bibliography""; ""Index"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 226, Number 1061. 606 $aInvolutes (Mathematics) 606 $aFinite groups 606 $aSolvable groups 606 $aFeit-Thompson theorem 615 0$aInvolutes (Mathematics) 615 0$aFinite groups. 615 0$aSolvable groups. 615 0$aFeit-Thompson theorem. 676 $a512/.23 700 $aWaldecker$b Rebecca$f1979-$01229823 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910819074303321 996 $aIsolated involutions in finite groups$93999480 997 $aUNINA