LEADER 01475cam--2200469---450 001 990001376690203316 005 20220307100729.0 035 $a000137669 035 $aUSA01000137669 035 $a(ALEPH)000137669USA01 035 $a000137669 100 $a20040128d1968----km-y0itay5003----ba 101 1 $aita$cfre 102 $aIT 105 $a||||||||001yy 200 1 $a<> Rothschild$fJean Bouvier 210 $aBari$cLaterza$d1968 215 $a313 p.$d22 cm 225 2 $aBiblioteca di cultura moderna$v651 300 $aTraduzione di Alfredo Salsano 410 0$12001$aBiblioteca di cultura moderna$v651 454 0$12001$a<> Rothschild$918003 602 $aRothschild $xStoria$2BNCF 676 $a332.10922 700 1$aBOUVIER,$bJean$f<1920-1987>$0302172 702 1$aSALSANO,$bAlfredo 801 0$aIT$bsalbc$gISBD 912 $a990001376690203316 951 $aX.3.B. 3476(Varie Coll. 6/651)$b29755 L.M.$cX.3.$d515462 951 $aXXX.A. Coll. 32/ 25(Coll. AG 651)$b9474 G.$cXXX.A. Coll.$d00252976 951 $aVI.7.B. 3533$b04504 ISLA$cVI.7.$d548663 959 $aBK 969 $aUMA 969 $aGIU 969 $aISLA 979 $aSIAV4$b10$c20040128$lUSA01$h1538 979 $aSIAV4$b10$c20040128$lUSA01$h1548 979 $aPATRY$b90$c20040406$lUSA01$h1737 979 $aCOPAT3$b90$c20041209$lUSA01$h1358 979 $aCOPAT6$b90$c20060525$lUSA01$h1027 996 $aRothschild$918003 997 $aUNISA LEADER 04868nam 2200661 450 001 9910819038803321 005 20231020185459.0 010 $a1-119-08102-5 010 $a1-119-08100-9 010 $a1-119-08103-3 035 $a(CKB)3710000000500634 035 $a(EBL)4338285 035 $a(SSID)ssj0001570971 035 $a(PQKBManifestationID)16219430 035 $a(PQKBTitleCode)TC0001570971 035 $a(PQKBWorkID)14836031 035 $a(PQKB)10118317 035 $a(PQKBManifestationID)16226133 035 $a(PQKB)22762899 035 $a(MiAaPQ)EBC4338285 035 $a(DLC) 2015038619 035 $a(Au-PeEL)EBL4338285 035 $a(CaPaEBR)ebr11251451 035 $a(CaONFJC)MIL850080 035 $a(OCoLC)957699561 035 $a(EXLCZ)993710000000500634 100 $a20150928d2016 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aPlant-environment interaction $eresponses and approaches to mitigate stress /$fedited by Mohamed Mahgoub Azooz, South Valley University, Egypt, Parvaiz Ahmad, S.P. College, Srinagar, India 210 1$aHoboken :$cJohn Wiley & Sons,$d2016. 215 $a1 online resource (650 pages) 225 0 $aTHEi Wiley ebooks. 300 $aIncludes index. 311 $a1-119-08099-1 327 $aTitle Page; Table of Contents; List of contributors; Preface; About the editors; CHAPTER 1: Biotechnological applications to improve salinity stress in wheat; 1.1 Introduction; 1.2 Salinity stress is a striking environmental threat to plants; 1.3 Effects of salinity stress on wheat; 1.4 Wheat natural tolerance and defence against salinity; 1.5 Biotechnological applications to improve salinity stress in wheat; 1.6 Conclusion and future perspectives; References; CHAPTER 2: Soybean under abiotic stress: Proteomic approach; 2.1 Introduction; 2.2 Proteomic approach; 2.3 Proteomics for soybean 327 $a2.4 Proteomics of soybean under abiotic stresses2.5 Conclusion and future perspectives; Acknowledgement; References; CHAPTER 3: Proteomic analysis of food crops under abiotic stresses in the context of climate change; 3.1 Introduction; 3.2 Atmospheric greenhouse gas composition; 3.3 Temperature; 3.4 Conclusions and future perspectives; References; CHAPTER 4: Transcriptome modulation in rice under abiotic stress; 4.1 Introduction; 4.2 Drought stress; 4.3 Salt stress; 4.4 Temperature stress; 4.5 Heavy metals; 4.6 Common stress-responsive genes; 4.7 Conclusions and future prospects 327 $aAcknowledgementsReferences; CHAPTER 5: Sulphur: Role in alleviation of environmental stress in crop plants; 5.1 Introduction; 5.2 Sulphur assimilation and the most important S compounds in plants; 5.3 Heavy metals; 5.4 Salinity; 5.5 Drought; 5.6 Hydrogen sulphide; 5.7 Conclusions and future prospects; References; CHAPTER 6: Proline and glycine betaine modulate cadmium-induced oxidative stress tolerance in plants: Possible biochemical and molecular mechanisms; 6.1 Introduction; 6.2 Cadmium toxicity symptoms in plant cells and physiological and cellular responses 327 $a6.3 Possible mechanisms of cadmium tolerance in plants6.4 Cadmium-induced ROS generation in plant cells; 6.5 Detoxification of ROS under Cd stress; 6.6 Modulation of antioxidant enzyme activities in response to cadmium stress; 6.7 Methylglyoxal and glyoxalase enzyme activities under cadmium stress; 6.8 Co-ordinated induction of MG and ROS detoxification systems in inducing heavy metal stress tolerance, including Cd stress; 6.9 Exogenous proline and betaine pretreatment and Cd stress tolerance in relation to ROS and MG detoxification; 6.10 Conclusions and future perspectives; References 327 $aCHAPTER 7: Enhancement of vegetables and fruits growth and yield by application of brassinosteroids under abiotic stresses: A review7.1 Introduction; 7.2 Environmental stresses; 7.3 Brassinosteroids; 7.4 Role of BRs on the growth and yield of vegetables and fruits under various environmental stresses; 7.5 Conclusion and future prospects; Acknowledgements; References; CHAPTER 8: Physiological mechanisms of salt stress tolerance in plants: An overview; 8.1 Introduction; 8.2 Adverse impact of salinity on plants; 8.3 Plant performance under saline conditions; 8.4 Mechanism of salinity tolerance 327 $a8.5 Salt and water stress 606 $aPlants$xEffect of stress on 606 $aPlant ecophysiology 615 0$aPlants$xEffect of stress on. 615 0$aPlant ecophysiology. 676 $a632/.1 702 $aAzooz$b M. M. 702 $aAhmad$b Parvaiz 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910819038803321 996 $aPlant-environment interaction$93948427 997 $aUNINA