LEADER 02416nam 2200577 450 001 9910818933303321 005 20170918221625.0 010 $a1-4704-0093-6 035 $a(CKB)3360000000464700 035 $a(EBL)3113815 035 $a(SSID)ssj0000889157 035 $a(PQKBManifestationID)11521347 035 $a(PQKBTitleCode)TC0000889157 035 $a(PQKBWorkID)10875857 035 $a(PQKB)10825300 035 $a(MiAaPQ)EBC3113815 035 $a(RPAM)4417368 035 $a(PPN)195413997 035 $a(EXLCZ)993360000000464700 100 $a20140903h19941994 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 12$aA proof of the q-Macdonald-Morris conjecture for BCn /$fKevin W.J. Kadell 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1994. 210 4$dİ1994 215 $a1 online resource (93 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 108, Number 516 300 $a"March 1994, Volume 108, Number 516 (first of 5 numbers)." 311 $a0-8218-2552-6 320 $aIncludes bibliographical references. 327 $a""Table of Contents""; ""1. Introduction""; ""2. Outline of the proof and summary""; ""3. The simple roots and reflections of B[sub(n)] and C[sub(n)]""; ""4. The g-engine of our q-machine""; ""5. Removing the denominators""; ""6. The q-transportation theory for BC[sub(n)]""; ""7. Evaluation of the constant terms A, E, K, F and Z""; ""8. q-analogues of some functional equations""; ""9. g-transportation theory revisited""; ""10. A proof of Theorem 4""; ""11. The parameter r""; ""12. The g-Macdonald-Morris conjecture for B[sub(n)], B[sup(v)][sub(n)], C[sub(n)], C[sup(v)][sub(n)] and D[sub(n)]"" 327 $a""13. Conclusion"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 108, Number 516. 606 $aBeta functions 606 $aDefinite integrals 606 $aSelberg trace formula 615 0$aBeta functions. 615 0$aDefinite integrals. 615 0$aSelberg trace formula. 676 $a515/.52 700 $aKadell$b Kevin W. J.$f1950-$01609399 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910818933303321 996 $aA proof of the q-Macdonald-Morris conjecture for BCn$93984250 997 $aUNINA