LEADER 00852nam a22002411i 4500 001 991003522209707536 005 20030901080325.0 008 031111s1963 fr |||||||||||||||||fre 035 $ab12438467-39ule_inst 035 $aARCHE-047175$9ExL 040 $aDip.to Lingue$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a809 100 1 $aWeber, Jean-Paul$0126835 245 10$aDomaines thématiques /$cJean-Paul Weber 260 $aParis :$bGallimard,$c[1963] 300 $a341 p. ;$c23 cm 440 0$aBibliothèque des idées 907 $a.b12438467$b02-04-14$c13-11-03 912 $a991003522209707536 945 $aLE012 F 769$g1$i2012000168114$lle012$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i12864481$z13-11-03 996 $aDomaines thématiques$9165944 997 $aUNISALENTO 998 $ale012$b13-11-03$cm$da $e-$ffre$gfr $h0$i1 LEADER 02472nam 2200601 450 001 9910818932603321 005 20180613001258.0 010 $a1-4704-0077-4 035 $a(CKB)3360000000464684 035 $a(EBL)3113875 035 $a(SSID)ssj0000889172 035 $a(PQKBManifestationID)11497177 035 $a(PQKBTitleCode)TC0000889172 035 $a(PQKBWorkID)10876197 035 $a(PQKB)11583439 035 $a(MiAaPQ)EBC3113875 035 $a(RPAM)1105031 035 $a(PPN)195413830 035 $a(EXLCZ)993360000000464684 100 $a20140905h19931993 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRankin-Selberg convolutions for SO2l+1 x GLn $elocal theory /$fDavid Soudry 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1993. 210 4$d©1993 215 $a1 online resource (113 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 105, Number 500 300 $a"September 1993, volume 105, number 500 (first of 6 numbers)." 300 $a"2l+1" and "n" are subscript. 311 $a0-8218-2568-2 320 $aIncludes bibliographical references. 327 $a""Contents""; ""0. Introduction and Preliminaries""; ""1. The Integrals to be Studied""; ""2. Estimates for Whittaker Functions on G[sub(l)](Nonarchimedean Case)""; ""3. Estimates for Whittaker Functions on G[sub(l)] (Archimedean Case)""; ""4. Convergence of the Integrals (Nonarchimedean Case)""; ""5. Convergence of the Integrals (Archimedean Case)""; ""6. A(W,I??[sub(r,s)]) Can Be Made Constant (Nonarchimedean Case)""; ""7. An Analog in the Archimedean Case""; ""8. Uniqueness Theorems""; ""9. Application of the Intertwining Operator""; ""10. Definition of Local Factors"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 105, Number 500. 606 $aConvolutions (Mathematics) 606 $aGamma functions 606 $aL-functions 606 $aFunctional equations 615 0$aConvolutions (Mathematics) 615 0$aGamma functions. 615 0$aL-functions. 615 0$aFunctional equations. 676 $a511.3/3 700 $aSoudry$b David$f1956-$0319153 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910818932603321 996 $aRankin-Selberg convolutions for SO2l+1 x GLn$93984244 997 $aUNINA LEADER 01403nam 2200481 450 001 9910825445503321 005 20230807194346.0 010 $a1-4677-9771-5 035 $a(CKB)4100000005115594 035 $a(MiAaPQ)EBC5442891 035 $a(Au-PeEL)EBL5442891 035 $a(CaPaEBR)ebr11590171 035 $a(OCoLC)969076151 035 $a(EXLCZ)994100000005115594 100 $a20180716d2015 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe comedy of errors /$fby William Shakespeare 210 1$aMinneapolis, MN :$cFirst Avenue Editions, a Division of Lerner Publishing Group,$d[2015] 210 4$d©2015 215 $a1 online resource (84 pages) 225 1 $aCambridge school Shakespeare 410 0$aCambridge school Shakespeare. 606 $aShipwreck victims$vDrama 606 $aYoung adult drama, English 606 $aMistaken identity$vDrama 606 $aBrothers$vDrama 615 0$aShipwreck victims 615 0$aYoung adult drama, English. 615 0$aMistaken identity 615 0$aBrothers 676 $a822.33 700 $aShakespeare$b William$0132200 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910825445503321 996 $aComedy of errors$928578 997 $aUNINA