LEADER 03680nam 2200613 450 001 9910818826303321 005 20180322131159.0 010 $a0-8218-7691-0 010 $a0-8218-5109-8 035 $a(CKB)3240000000069630 035 $a(EBL)3113039 035 $a(SSID)ssj0000712475 035 $a(PQKBManifestationID)11407516 035 $a(PQKBTitleCode)TC0000712475 035 $a(PQKBWorkID)10645416 035 $a(PQKB)10084620 035 $a(MiAaPQ)EBC3113039 035 $a(WaSeSS)Ind00039367 035 $a(RPAM)4345145 035 $a(PPN)197104266 035 $a(EXLCZ)993240000000069630 100 $a19890913h19891989 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aColoring theories /$fSteve Fisk 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[1989] 210 4$dİ1989 215 $a1 online resource (182 p.) 225 1 $aContemporary mathematics,$x0271-4132 ;$v103 300 $aDescription based upon print version of record. 320 $aIncludes bibliographical references (pages 163-164). 327 $a""Contents""; ""Preface""; ""Chapter 1: Properties of the Combinatorial Category""; ""1. Hom and Cartesian Product""; ""2. The Coloring Functor B""; ""3. The Automorphism Complex""; ""4. Hat and Join""; ""5. Wreath Products and Graph Composition""; ""6. Limits""; ""7. Examples""; ""8. Coloring Arbitrary Complexes""; ""Chapter 2: The Symmetric Group Complex Sn""; ""1. Basic Properties of Sn""; ""2. Element-wise description of Maps""; ""3. Local connectivity of Sn""; ""4. The Derangement Complex""; ""5. General Decomposition and the Oberwolhfach Problem"" 327 $a""Chapter 3: Complexes Arising from Geometry""""1. Points and Lines in the plane""; ""2. Baer Subplanes""; ""3. Spreads in PG(3,q)""; ""4. The Hyperbolic Quadric in PG(3,q)""; ""5. Hermitian Varieties""; ""Chapter 4: Graphs""; ""1. Introduction""; ""2. Reflexive Line Graphs""; ""3. Generalized Line Graphs""; ""4. Group Graphs""; ""5. AUT(G)""; ""6. The 3-Regular Group Graphs""; ""Chapter 5: Complexes With a Structure Group""; ""1. Introduction""; ""2. Examples""; ""3. Matrix Groups""; ""4. Colorings of PGL-structures""; ""5. The Hyperbolic Quadric""; ""6. Elliptic Involutions of PGL(2,q)"" 327 $a""7. The Extension Problem""""8. AF(n,q) and hi-affine maps""; ""Chapter 6: Reflexive and Self-Dual Complexes""; ""1. The Color Spectrum""; ""2. Binary n-Trees""; ""3. Reflexive Bipartite Graphs""; ""4. Sparse Planar Thiangulations""; ""5. Edge Coloring 3-Complexes and Reflexive 2-Complexes""; ""6. Reflexive Thiangulations of the 2-Sphere""; ""Chapter 7: Continuous Colorings""; ""1. Continuous Colorings""; ""2. Elementary Results about Continuous Colorings""; ""3. Infinite Reflexive Complexes""; ""4. Cartesian Products and Latin Square Spaces""; ""5. Colorings of Real Latin Squares"" 327 $a""Chapter 8: Coloring with Arbitrary Complexes""""1. Introduction""; ""2. Cubical Coloring""; ""3. Properties of the Dodecahedron""; ""4. More Theories""; ""Notation""; ""Bibliography"" 410 0$aContemporary mathematics (American Mathematical Society) ;$v103. 606 $aMap-coloring problem 606 $aGroup theory 606 $aLow-dimensional topology 615 0$aMap-coloring problem. 615 0$aGroup theory. 615 0$aLow-dimensional topology. 676 $a514/.3 700 $aFisk$b Steve$f1946-$01669181 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910818826303321 996 $aColoring theories$94030290 997 $aUNINA