LEADER 02403nam 2200505 450 001 9910818807303321 005 20170816143252.0 010 $a0-8218-9907-4 035 $a(CKB)3360000000464024 035 $a(EBL)3113718 035 $a(SSID)ssj0000910345 035 $a(PQKBManifestationID)11944090 035 $a(PQKBTitleCode)TC0000910345 035 $a(PQKBWorkID)10941324 035 $a(PQKB)11230159 035 $a(MiAaPQ)EBC3113718 035 $a(RPAM)0000000741 035 $a(PPN)195409949 035 $a(EXLCZ)993360000000464024 100 $a20720316d1971 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAbelian subalgebras of von Neumann algebras /$fby Donald Bures 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1971. 215 $a1 online resource (135 p.) 225 1 $aMemoirs of the American Mathematical Society ;$vnumber 110 300 $aDescription based upon print version of record. 311 $a0-8218-1810-4 320 $aBibliography: pages 126-127. 327 $a""Contents""; ""A?0 Remarks on notation""; ""PART I: Multiplicity in factors of Type II[sub(1)]""; ""A?1 The multiplicity of a projection""; ""A?2 The normal case""; ""A?3 The general case""; ""PART II: The von Neumann construction of factors""; ""A?4 m-groups with m abelian""; ""A?5 m-groups""; ""A?6 Subalgebras m of G with G strongly finite over m""; ""A?7 Substantial subalgebras""; ""A? 8 Relations between the type of G and the type of G(G, m)""; ""A?9 Construction of G containing a substantial subalgebra m with G(G , m) a given full m-group""; ""PART III: Thick subalgebras"" 327 $a""A? 10 Elementary properties""""A? 11 Strong orthogonality""; ""A? 12 A method for constructing thick subalgebras""; ""A? 13 Methods for determining the deficiency type and the multiplicity function""; ""A?14 Dixmier's example""; ""A?15 Some examples of thick subalgebras"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 110. 606 $aFunctional analysis 615 0$aFunctional analysis. 700 $aBures$b Donald$01612887 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910818807303321 996 $aAbelian subalgebras of von Neumann algebras$93941898 997 $aUNINA