LEADER 02616nam 2200553 450 001 9910818690703321 005 20230808202643.0 010 $a3-11-047545-6 010 $a3-11-047631-2 024 7 $a10.1515/9783110476316 035 $a(CKB)3850000000001088 035 $a(EBL)4707924 035 $a(MiAaPQ)EBC4707924 035 $a(DE-B1597)465893 035 $a(OCoLC)960040342 035 $a(OCoLC)962087318 035 $a(DE-B1597)9783110476316 035 $a(Au-PeEL)EBL4707924 035 $a(CaPaEBR)ebr11274554 035 $a(CaONFJC)MIL957908 035 $a(EXLCZ)993850000000001088 100 $a20170831h20162016 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aWeak convergence of stochastic processes $ewith applications to statistical limit theorems /$fVidyadhar S. Mandrekar 210 1$aBerlin, [Germany] :$cDe Gruyter,$d2016. 210 4$dİ2016 215 $a1 online resource (148 p.) 225 0 $aDe Gruyter Textbook 300 $aDescription based upon print version of record. 311 $a3-11-047542-1 320 $aIncludes bibliographical references. 327 $tFrontmatter -- $tContents -- $t1. Weak convergence of stochastic processes -- $t2. Weak convergence in metric spaces -- $t3. Weak convergence on C[0, 1] and D[0,?) -- $t4. Central limit theorem for semi-martingales and applications -- $t5. Central limit theorems for dependent random variables -- $t6. Empirical process -- $tBibliography 330 $aThe purpose of this book is to present results on the subject of weak convergence in function spaces to study invariance principles in statistical applications to dependent random variables, U-statistics, censor data analysis. Different techniques, formerly available only in a broad range of literature, are for the first time presented here in a self-contained fashion. Contents:Weak convergence of stochastic processesWeak convergence in metric spacesWeak convergence on C[0, 1] and D[0,?)Central limit theorem for semi-martingales and applicationsCentral limit theorems for dependent random variablesEmpirical processBibliography 410 3$aDe Gruyter Textbook 606 $aLimit theorems (Probability theory) 615 0$aLimit theorems (Probability theory) 676 $a519.2/3 700 $aMandrekar$b V.$0142968 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910818690703321 996 $aWeak convergence of stochastic processes$94067847 997 $aUNINA