LEADER 05450nam 2200697 a 450 001 9910817900803321 005 20240313135426.0 010 $a1-118-56961-X 010 $a1-299-14788-7 010 $a1-118-56939-3 035 $a(CKB)2670000000327487 035 $a(EBL)1119535 035 $a(OCoLC)827208161 035 $a(SSID)ssj0000819967 035 $a(PQKBManifestationID)11459493 035 $a(PQKBTitleCode)TC0000819967 035 $a(PQKBWorkID)10874231 035 $a(PQKB)11602895 035 $a(OCoLC)826685680 035 $a(MiAaPQ)EBC1119535 035 $a(Au-PeEL)EBL1119535 035 $a(CaPaEBR)ebr10653570 035 $a(CaONFJC)MIL446038 035 $a(EXLCZ)992670000000327487 100 $a20120522d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aLaser velocimetry in fluid mechanics /$fedited by Alain Boutier 205 $a1st ed. 210 $aLondon $cISTE ;$aHoboken, N.J. $cJohn Wiley & Sons$d2012 215 $a1 online resource (428 p.) 225 0 $aWaves series 300 $aDescription based upon print version of record. 311 $a1-84821-397-2 320 $aIncludes bibliographical references and index. 327 $aCover; Laser Velocimetry in Fluid Mechanics; Title Page; Copyright Page; Table of Contents; Preface; Introduction; Chapter 1. Measurement Needs in Fluid Mechanics; 1.1. Navier-Stokes equations; 1.2. Similarity parameters; 1.3. Scale notion; 1.4. Equations for turbulent flows and for Reynolds stress tensor; 1.5. Spatial-temporal correlations; 1.6. Turbulence models; 1.6.1. Zero equation model; 1.6.2. One equation model; 1.6.3. Two equations model; 1.6.4. Reynolds stress models (RSM, ARSM); 1.7. Conclusion; 1.8. Bibliography; Chapter 2. Classification of Laser Velocimetry Techniques 327 $a2.1. Generalities2.2. Definitions and vocabulary; 2.3. Specificities of LDV; 2.3.1. Advantages; 2.3.2. Use limitations; 2.4. Application domain of laser velocimeters (LDV, PIV, DGV); 2.5. Velocity measurements based on interactions with molecules; 2.5.1. Excitation by electron beams; 2.5.2. Laser fluorescence; 2.5.3. Spectroscopy with a tunable laser diode in the infrared; 2.5.4. Coherent anti-Stokes Raman scattering technique; 2.5.5. Tagging techniques; 2.5.6. Summary; 2.6. Bibliography; Chapter 3. Laser Doppler Velocimetry; 3.1. Introduction; 3.2. Basic idea: Doppler effect 327 $a3.2.1. Double Doppler effect3.2.2. Four optical set-ups; 3.2.3. Comments on the four configurations; 3.3. Fringe velocimetry theory; 3.3.1. Fringe pattern in probe volume; 3.3.2. Interferometry theory; 3.3.3. Comparison between the three theoretical approaches; 3.3.4. SNR; 3.4. Velocity sign measurement; 3.4.1. Problem origin; 3.4.2. Solution explanation; 3.4.3. Various means to shift a laser beam frequency; 3.5. Emitting and receiving optics; 3.5.1. Emitting; 3.5.2. Probe volume characteristics; 3.5.3. Receiving part; 3.6. General organigram of a mono-dimensional fringe velocimeter 327 $a3.7. Necessity for simultaneous measurement of 2 or 3 velocity components3.8. 2D laser velocimetry; 3.9. 3D laser velocimetry; 3.9.1. Exotic 3D laser velocimeters; 3.9.2. 3D fringe laser velocimetry; 3.9.3. Five-beam 3D laser velocimeters; 3.9.4. Six-beam 3D laser velocimeters; 3.10. Electronic processing of Doppler signal; 3.10.1. Generalities and main classes of Doppler processors; 3.10.2. Photon converter: photomultiplier; 3.10.3. Doppler burst detection; 3.10.4. First processing units; 3.10.5. Digital processing units; 3.10.6. Exotic techniques; 3.10.7. Optimization of signal processing 327 $a3.11. Measurement accuracy in laser velocimetry3.11.1. Probe volume influence; 3.11.2. Calibration; 3.11.3. Doppler signal quality; 3.11.4. Velocity domain for measurements; 3.11.5. Synthesis of various bias and error sources; 3.11.6. Specific problems in 2D and 3D devices; 3.11.7. Global accuracy; 3.12. Specific laser velocimeters for specific applications; 3.12.1. Optical fibers in fringe laser velocimetry; 3.12.2. Miniature laser velocimeters; 3.12.3. Doppler image of velocity field; 3.13. Bibliography; Chapter 4. Optical Barrier Velocimetry; 4.1. Laser two-focus velocimeter 327 $a4.2. Mosaic laser velocimeter 330 $a In fluid mechanics, velocity measurement is fundamental in order to improve the behavior knowledge of the flow. Velocity maps help us to understand the mean flow structure and its fluctuations, in order to further validate codes.Laser velocimetry is an optical technique for velocity measurements; it is based on light scattering by tiny particles assumed to follow the flow, which allows the local fluid flow velocity and its fluctuations to be determined. It is a widely used non-intrusive technique to measure velocities in fluid flows, either locally or in a map.This book presents 410 0$aISTE 606 $aFluid dynamic measurements 606 $aFluid mechanics 606 $aLaser Doppler velocimeter 615 0$aFluid dynamic measurements. 615 0$aFluid mechanics. 615 0$aLaser Doppler velocimeter. 676 $a532 701 $aBoutier$b A$g(Alain)$0521547 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910817900803321 996 $aLaser velocimetry in fluid mechanics$9837179 997 $aUNINA