LEADER 02387nam 2200565 a 450 001 9910817652703321 005 20240516111247.0 010 $a1-283-23505-6 010 $a9786613235053 010 $a981-4343-85-4 035 $a(CKB)3400000000016745 035 $a(EBL)840594 035 $a(OCoLC)858228514 035 $a(SSID)ssj0000538105 035 $a(PQKBManifestationID)11358369 035 $a(PQKBTitleCode)TC0000538105 035 $a(PQKBWorkID)10557816 035 $a(PQKB)11212665 035 $a(MiAaPQ)EBC840594 035 $a(WSP)00008129 035 $a(Au-PeEL)EBL840594 035 $a(CaPaEBR)ebr10493540 035 $a(CaONFJC)MIL323505 035 $a(EXLCZ)993400000000016745 100 $a20110929d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 13$aAn invitation to q-series $efrom Jacobi's triple product identity to Ramanujan's "most beautiful identity" /$fby Hei-Chi Chan 205 $a1st ed. 210 $aSingapore $cWorld Scientific Pub. Co.$d2011 215 $a1 online resource (237 p.) 300 $aTitle from t.p. verso. 311 $a981-4343-84-6 320 $aIncludes bibliographical references and index. 327 $apt. 1. Jacobi's triple product identity -- pt. 2. The Rogers-Ramanujan identitites -- pt. 3. The Rogers-Ramanujan continued fraction -- pt. 4. From the "most beautiful identity" to Ramanujan's congruences. 330 $aThe aim of these lecture notes is to provide a self-contained exposition of several fascinating formulas discovered by Srinivasa Ramanujan. Two central results in these notes are: (1) the evaluation of the Rogers-Ramanujan continued fraction - a result that convinced G H Hardy that Ramanujan was a "mathematician of the highest class", and (2) what G. H. Hardy called Ramanujan's "Most Beautiful Identity". This book covers a range of related results, such as several proofs of the famous Rogers-Ramanujan identities and a detailed account of Ramanujan's congruences. It also covers a range of techn 606 $aq-series 615 0$aq-series. 676 $a515.243 700 $aHei-Chi$b Chan$01615111 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910817652703321 996 $aAn invitation to q-series$93945185 997 $aUNINA