LEADER 03183nam 2200673Ia 450 001 9910817428603321 005 20200520144314.0 010 $a1-107-14425-6 010 $a0-511-64815-4 010 $a0-511-18783-1 010 $a0-511-56155-5 010 $a0-511-61665-1 010 $a0-511-18690-8 035 $a(CKB)1000000000353803 035 $a(EBL)256650 035 $a(OCoLC)171138574 035 $a(SSID)ssj0000279510 035 $a(PQKBManifestationID)11217713 035 $a(PQKBTitleCode)TC0000279510 035 $a(PQKBWorkID)10268037 035 $a(PQKB)10878352 035 $a(UkCbUP)CR9780511616655 035 $a(MiAaPQ)EBC256650 035 $a(Au-PeEL)EBL256650 035 $a(CaPaEBR)ebr10124656 035 $a(OCoLC)80244805 035 $a(PPN)261311654 035 $a(EXLCZ)991000000000353803 100 $a20040106d2004 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 12$aA first course in combinatorial optimization /$fJon Lee 205 $a1st ed. 210 $aCambridge, UK ;$aNew York $cCambridge University Press$d2004 215 $a1 online resource (xvi, 211 pages) $cdigital, PDF file(s) 225 1 $aCambridge texts in applied mathematics 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-01012-8 311 $a0-521-81151-1 320 $aIncludes bibliographical references (p. 207-208) and indexes. 327 $aPolytopes and Linear Programming -- 1. Matroids and the Greedy Algorithm -- 2. Minimum-Weight Dipaths -- 3. Matroid Intersection -- 4. Matching -- 5. Flows and Cuts -- 6. Cutting Planes -- 7. Branch-&-Bound -- 8. Optimizing Submodular Functions. 330 $aA First Course in Combinatorial Optimization is a 2004 text for a one-semester introductory graduate-level course for students of operations research, mathematics, and computer science. It is a self-contained treatment of the subject, requiring only some mathematical maturity. Topics include: linear and integer programming, polytopes, matroids and matroid optimization, shortest paths, and network flows. Central to the exposition is the polyhedral viewpoint, which is the key principle underlying the successful integer-programming approach to combinatorial-optimization problems. Another key unifying topic is matroids. The author does not dwell on data structures and implementation details, preferring to focus on the key mathematical ideas that lead to useful models and algorithms. Problems and exercises are included throughout as well as references for further study. 410 0$aCambridge texts in applied mathematics. 606 $aCombinatorial optimization 606 $aCombinatorial analysis 615 0$aCombinatorial optimization. 615 0$aCombinatorial analysis. 676 $a519.6/4 700 $aLee$b Jon$f1960-$01665468 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910817428603321 996 $aA first course in combinatorial optimization$94024110 997 $aUNINA