LEADER 02434nam 2200589 450 001 9910817395903321 005 20170822144208.0 010 $a1-4704-0599-7 035 $a(CKB)3360000000465169 035 $a(EBL)3114044 035 $a(SSID)ssj0000889074 035 $a(PQKBManifestationID)11488383 035 $a(PQKBTitleCode)TC0000889074 035 $a(PQKBWorkID)10876420 035 $a(PQKB)10237202 035 $a(MiAaPQ)EBC3114044 035 $a(RPAM)16475640 035 $a(PPN)195418743 035 $a(EXLCZ)993360000000465169 100 $a20150415h20102010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe moduli space of cubic threefolds as a ball quotient /$fDaniel Allcock, James A. Carlson, Domingo Toledo 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2010. 210 4$dİ2010 215 $a1 online resource (70 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 209, Number 985 300 $a"Volume 209, Number 985 (fourth of 5 numbers)." 311 $a0-8218-4751-1 320 $aIncludes bibliographical references and index. 327 $a""Contents""; ""Introduction""; ""Chapter 1. Moduli of Smooth Cubic Threefolds""; ""Chapter 2. The Discriminant near a Chordal Cubic""; ""Chapter 3. Extension of the Period Map""; ""Chapter 4. Degeneration to a Chordal Cubic""; ""4.1. Statement of results""; ""4.2. Overview of the calculations""; ""4.3. Semistable reduction""; ""4.4. Cohomology computations""; ""Chapter 5. Degeneration to a Nodal Cubic""; ""Chapter 6. The Main Theorem""; ""Chapter 7. The Monodromy Group and Hyperplane Arrangement""; ""Bibliography""; ""Index"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 209, Number 985. 606 $aModuli theory 606 $aSurfaces, Cubic 606 $aThreefolds (Algebraic geometry) 615 0$aModuli theory. 615 0$aSurfaces, Cubic. 615 0$aThreefolds (Algebraic geometry) 676 $a516.3/5 700 $aAllcock$b Daniel$f1969-$01672401 702 $aCarlson$b James A.$f1946- 702 $aToledo$b Domingo 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910817395903321 996 $aThe moduli space of cubic threefolds as a ball quotient$94035729 997 $aUNINA