LEADER 00857nam0-22002771i-450- 001 990001446290403321 035 $a000144629 035 $aFED01000144629 035 $a(Aleph)000144629FED01 035 $a000144629 100 $a20000920d1894----km-y0itay50------ba 101 0 $ager 200 1 $aFormeln und Hulfstafeln fur geographische Ortsbestimmungen$fTh. Albrecht 205 $a3. umgearbeitete vermehrte Auflage 210 $aLeipzig$cVerlag Von Wilhelm Engelmann$d1894 610 0 $aTavole trigonometriche$aGuida 700 1$aAlbrecht,$bKarl Theodor$f<1843-1915>$0437240 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001446290403321 952 $a204-G-38$b808$fMA1 959 $aMA1 962 $a65A05 996 $aFormeln und Hulfstafeln fur geographische Ortsbestimmungen$9345038 997 $aUNINA DB $aING01 LEADER 01019nam--2200349---450- 001 990001871040203316 005 20070719090247.0 035 $a000187104 035 $aUSA01000187104 035 $a(ALEPH)000187104USA01 035 $a000187104 100 $a20040722d1916----km-y0itay0103----ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $a<> bacino della Beonia e il Massiccio del Monte Bego$fAlessandro Roccati 210 $aPavia$cFusi$d1916 215 $a68 p., 2 p. di tav.$d24 cm 410 0$12001 454 1$12001 461 1$1001-------$12001 700 1$aROCCATI,$bAlessandro$0216452 801 0$aIT$bsalbc$gISBD 912 $a990001871040203316 951 $aI misc R 10$b4681 L.M.$cI misc R 959 $aBK 969 $aUMA 979 $aSIAV5$b10$c20040722$lUSA01$h1744 979 $aCOPAT2$b90$c20050311$lUSA01$h1159 979 $aCOPAT6$b90$c20070719$lUSA01$h0902 996 $aBacino della Beonia e il Massiccio del Monte Bego$9954910 997 $aUNISA LEADER 04185nam 2200613 450 001 9910817274203321 005 20170822144443.0 010 $a0-8218-9014-X 035 $a(CKB)3360000000464086 035 $a(EBL)3114507 035 $a(SSID)ssj0000888965 035 $a(PQKBManifestationID)11523062 035 $a(PQKBTitleCode)TC0000888965 035 $a(PQKBWorkID)10866572 035 $a(PQKB)10277464 035 $a(MiAaPQ)EBC3114507 035 $a(RPAM)17241252 035 $a(PPN)195419154 035 $a(EXLCZ)993360000000464086 100 $a20150416h20112011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe Goodwillie tower and the EHP sequence /$fMark Behrens 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2011. 210 4$dİ2011 215 $a1 online resource (90 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vVolume 218, Number 1026 300 $a"July 2012, Volume 218, Number 1026 (fourth of 5 numbers)." 311 $a0-8218-6902-7 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Abstract""; ""Introduction""; ""0.1. Conventions""; ""Chapter 1. Dyer-Lashof operations and the identity functor""; ""1.1. The operadic bar construction""; ""1.2. The cooperadic structure on B()""; ""1.3. Operad structure on *(Id)""; ""1.4. Homology of extended powers""; ""1.5. Dyer-Lashof-like operations""; ""Chapter 2. The Goodwillie tower of the EHP sequence""; ""2.1. Fiber sequences associated to the EHP sequence""; ""2.2. Homological behavior of the fiber sequences""; ""2.3. Transfinite Atiyah-Hirzebruch spectral sequences"" 327 $a""2.4. Transfinite Goodwillie spectral sequence""""Chapter 3. Goodwillie filtration and the P map""; ""3.1. Goodwillie filtration""; ""3.2. The genealogy of unstable elements""; ""3.3. Behavior of the E and P maps in the TAHSS""; ""3.4. Behavior of the E and P maps in the TGSS""; ""3.5. Detection in the TGSS""; ""3.6. Relationship with Whitehead products""; ""Chapter 4. Goodwillie differentials and Hopf invariants""; ""4.1. Hopf invariants and the transfinite EHPSS""; ""4.2. Stable Hopf invariants and metastable homotopy""; ""4.3. Goodwillie d1 differentials and stable Hopf invariants"" 327 $a""4.4. Higher Goodwillie differentials and unstable Hopf invariants""""4.5. Propagating differentials with the P and E maps""; ""4.6. Calculus form of the Whitehead conjecture""; ""4.7. Exotic Goodwillie differentials""; ""Chapter 5. EHPSS differentials""; ""5.1. EHPSS naming conventions""; ""5.2. Using the TGSS to compute the H map""; ""5.3. TEHPSS differentials from TGSS differentials""; ""5.4. A bad differential""; ""Chapter 6. Calculations in the 2-primary Toda range""; ""6.1. AHSS calculations""; ""6.2. Calculation of the GSS for S1""; ""6.3. GSS calculations"" 327 $a""6.4. Calculation of the EHPSS""""6.5. Tables of computations""; ""6.5.1. The AHSS for k(L(1))""; ""6.5.2. The AHSS for k(L(2))""; ""6.5.3. The AHSS for k(L(3))""; ""6.5.4. The EHPSS""; ""6.5.5. The GSS for n+1(S1)""; ""6.5.6. The GSS for n+2(S2)""; ""6.5.7. The GSS for n+3(S3)""; ""6.5.8. The GSS for n+4(S4)""; ""6.5.9. The GSS for n+5(S5)""; ""6.5.10. The GSS for n+6(S6)""; ""Appendix A. Transfinite spectral sequences associated to towers""; ""A.1. The Grothendieck group of ordinals""; ""A.2. Towers""; ""A.3. The transfinite homotopy spectral sequence of a tower"" 327 $a""A.4. Geometric boundary theorem""""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 218, Number 1026. 606 $aHomotopy groups 606 $aAlgebraic topology 606 $aSpectral sequences (Mathematics) 615 0$aHomotopy groups. 615 0$aAlgebraic topology. 615 0$aSpectral sequences (Mathematics) 676 $a514/.24 700 $aBehrens$b Mark$f1975-$01714676 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910817274203321 996 $aThe Goodwillie tower and the EHP sequence$94108710 997 $aUNINA