LEADER 00801nam0-22002651i-450 001 990004920240403321 005 20210604141221.0 035 $a000492024 035 $aFED01000492024 035 $a(Aleph)000492024FED01 035 $a000492024 100 $a19990604d1938----km-y0itay50------ba 101 0 $afre 105 $ay-------001yy 200 1 $aMémoires de la Société néophilologique de Helsinki$e13 210 $aHelsinki$cSociété néophilologique$d1938 215 $a431 p.$d25 cm 710 02$aSociété néophilologique$c$0394683 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990004920240403321 952 $aXS 18$bFil. Mod. 27608$fFLFBC 959 $aFLFBC 996 $aMémoires de la Société néophilologique de Helsinki$9523060 997 $aUNINA LEADER 05839nam 2200805Ia 450 001 9910817246103321 005 20200520144314.0 010 $a9786613909404 010 $a9781283596954 010 $a1283596954 010 $a9783527647118 010 $a3527647112 010 $a9783527647101 010 $a3527647104 035 $a(CKB)3400000000085590 035 $a(EBL)1021395 035 $a(OCoLC)796085399 035 $a(SSID)ssj0000715384 035 $a(PQKBManifestationID)11410205 035 $a(PQKBTitleCode)TC0000715384 035 $a(PQKBWorkID)10701306 035 $a(PQKB)10945951 035 $a(MiAaPQ)EBC1021395 035 $a(Au-PeEL)EBL1021395 035 $a(CaPaEBR)ebr10598751 035 $a(CaONFJC)MIL390940 035 $a(Perlego)2769803 035 $a(EXLCZ)993400000000085590 100 $a20120111d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aInkjet-based micromanufacturing /$fedited by Jan G. Korvink, Patrick J. Smith, and Dong-Youn Shin 205 $a1st ed. 210 $aWeinheim, Germany $cWiley-VCH$dc2012 215 $a1 online resource (389 p.) 225 0$aAdvanced micro & nanosystems ;$vv. 9 300 $aDescription based upon print version of record. 311 08$a9783527319046 311 08$a3527319042 320 $aIncludes bibliographical references and index. 327 $aInkjet-based Micromanufacturing; Contents; List of Contributors; 1 Overview of Inkjet-Based Micromanufacturing; 1.1 Introduction; 1.2 Inkjet Technology; 1.2.1 Continuous Mode Inkjet (CIJ) Technology; 1.2.2 Demand Mode Inkjet Technology; 1.3 Fluid Requirements; 1.4 Pattern Formation: Fluid/Substrate Interaction; 1.5 Micromanufacturing; 1.5.1 Introduction; 1.5.2 Limitations and Opportunities in Micromanufacturing; 1.5.3 Benefits of Inkjet in Microfabrication; 1.6 Examples of Inkjet in Micromanufacturing; 1.6.1 Chemical Sensors; 1.6.2 Optical MEMS Devices; 1.6.3 Bio-MEMS Devices 327 $a1.6.4 Assembly and Packaging1.7 Conclusions; Acknowledgments; References; 2 Combinatorial Screening of Materials Using Inkjet Printing as a Patterning Technique; 2.1 Introduction; 2.2 Inkjet Printing - from Well-Defined Dots to Homogeneous Films; 2.3 Thin-Film Libraries Prepared by Inkjet Printing; 2.4 Combinatorial Screening of Materials for Organic Solar Cells; 2.5 Conclusion and Outlook; References; 3 Thermal Inkjet; 3.1 History of Thermal Inkjet Technology; 3.2 Market Trends for Inkjet Products and Electrophotography; 3.3 Structures of Various TIJ Heads 327 $a3.4 Research on Rapid Boiling and Principle of TIJ3.5 Inkjetting Mechanism of TIJ; 3.6 Basic Jetting Behavior of TIJ; 3.6.1 Input Power Characteristics; 3.6.2 Frequency Characteristics; 3.6.3 Dependency on Temperature; 3.7 TIJ Behavior Analysis Using Simulation; 3.7.1 Cylindrical Thermal Propagating Calculation Based on the Finite Element Method (Software Name: Ansys); 3.7.2 Fluidic Free Boundary Calculation Based on the Finite Differentiation Method (Software name: Flow3D); 3.8 Issues with Reliability in TIJ; 3.9 Present and Future Evolution in TIJ Technology; References 327 $a4 High-Resolution Electrohydrodynamic Inkjet4.1 Introduction; 4.2 Printing System; 4.3 Control of Jet Motions; 4.4 Drop-on-Demand Mode Printing; 4.5 Versatility of Printable Materials and Resolutions; 4.6 Applications in Electronics and Biotechnology; 4.7 High-Resolution Printing of Charge; References; 5 Cross Talk in Piezo Inkjet; 5.1 Introduction; 5.2 Electrical Cross Talk; 5.3 Direct Cross Talk; 5.4 Pressure-Induced Cross Talk; 5.5 Acoustic Cross Talk; 5.6 Printhead Resonance; 5.7 Residual Vibrations; References; 6 Patterning; 6.1 Introduction; 6.1.1 Droplet Impact and Final Droplet Radius 327 $a6.1.2 Evaporation of Inkjet-Printed Droplets at Room Temperature6.1.3 Morphological Control for Ink Droplets, Lines, and Films; 6.2 Conclusion; References; 7 Drying of Inkjet-Printed Droplets; 7.1 Introduction; 7.2 Modeling of Drying of a Droplet; 7.2.1 Fluid Model; 7.2.2 Lubrication Approximation; 7.2.3 Solute Concentration; 7.2.4 Evaporation Velocity; 7.2.5 Numerical Method; 7.3 Results; 7.3.1 Droplet Shape Evolution; 7.3.2 Layer Thickness; 7.3.3 Effect of Diffusion; Acknowledgments; References; 8 Postprinting Processes for Inorganic Inks for Plastic Electronics Applications 327 $a8.1 Introduction 330 $aInkjet-based Micromanufacturing Inkjet technology goes way beyond putting ink on paper: it enables simpler, faster and more reliable manufacturing processes in the fields of micro- and nanotechnology. Modern inkjet heads are per se precision instruments that deposit droplets of fluids on a variety of surfaces in programmable, repeating patterns, allowing, after suitable modifications and adaptations, the manufacturing of devices such as thin-film transistors, polymer-based displays and photovoltaic elements. Moreover, inkjet technology facilitates the large-scale production of flexible RFID tr 410 0$aAdvanced Micro and Nanosystems 606 $aMicroelectronics$xDesign 606 $aMicrofabrication 606 $aInk-jet printing 606 $aMicroelectromechanical systems$xDesign and construction 615 0$aMicroelectronics$xDesign. 615 0$aMicrofabrication. 615 0$aInk-jet printing. 615 0$aMicroelectromechanical systems$xDesign and construction. 676 $a621.319 701 $aKorvink$b J. G$g(Jan G.)$0866599 701 $aSmith$b Patrick J.$cDr.$0152180 701 $aShin$b Dong-Youn$01629137 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910817246103321 996 $aInkjet-based micromanufacturing$93966667 997 $aUNINA