LEADER 00932cam0-2200313---450- 001 990005316380403321 005 20151029135445.0 010 $a0-89005-313-8 035 $a000531638 035 $aFED01000531638 035 $a(Aleph)000531638FED01 035 $a000531638 100 $a19990604d1979----km-y0itay50------ba 101 0 $aeng 102 $aUS 105 $ay-------001yy 200 1 $aArete$eancient writers, papyri, and inscriptions on the history and ideals of Greek athletics and games$fby Stephen G. Miller 210 $aChicago$cAres Publishers$d1979 215 $aIII, 114 p.$d22 cm 610 0 $aSport$aAntichitą$aFonti 676 $a938$v22$zita 676 $a796.0938$v22$zita 700 1$aMiller,$bStephen G.$0153552 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990005316380403321 952 $aP2B-290-MILLER S.-1979$bANT. G.R. 4132$fFLFBC 959 $aFLFBC 997 $aUNINA LEADER 03222nam 2200589 450 001 9910817241603321 005 20180613001307.0 010 $a1-4704-0454-0 035 $a(CKB)3360000000465034 035 $a(EBL)3114037 035 $a(SSID)ssj0000973194 035 $a(PQKBManifestationID)11539949 035 $a(PQKBTitleCode)TC0000973194 035 $a(PQKBWorkID)10959276 035 $a(PQKB)11129832 035 $a(MiAaPQ)EBC3114037 035 $a(RPAM)14165786 035 $a(PPN)195417380 035 $a(EXLCZ)993360000000465034 100 $a20051108h20062006 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 12$aA categorical approach to imprimitivity theorems for C*-dynamical systems /$fSiegfried Echterhoff [and three others] 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2006] 210 4$d©2006 215 $a1 online resource (186 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 850 300 $aDescription based upon print version of record. 311 $a0-8218-3857-1 320 $aIncludes bibliographical references (pages 167-169) and index. 327 $a""2.7. Morphisms and induced representations""""Chapter 3. The Functors""; ""3.1. Crossed products""; ""3.2. Restriction and inflation""; ""3.3. Decomposition""; ""3.4. Induced actions""; ""3.5. Combined functors""; ""Chapter 4. The Natural Equivalences""; ""4.1. Statement of the main results""; ""4.2. Some further linking algebra techniques""; ""4.3. Green's Theorem for induced algebras""; ""4.4. Green's Theorem for induced representations""; ""4.5. Mansfield's Theorem""; ""Chapter 5. Applications""; ""5.1. Equivariant triangles""; ""5.2. Restriction and induction"" 327 $a""5.3. Symmetric imprimitivity""""Appendix A. Crossed Products by Actions and Coactions""; ""A.1. Tensor products""; ""A.2. Actions and their crossed products""; ""A.3. Coactions""; ""A.4. Slice maps and nondegeneracy""; ""A.5. Covariant representations and crossed products""; ""A.6. Dual actions and decomposition coactions""; ""A.7. Normal coactions and normalizations""; ""A.8. The duality theorems of Imai-Takai and Katayama""; ""A.9. Other definitions of coactions""; ""Appendix B. The Imprimitivity Theorems of Green and Mansfield""; ""B.1. Imprimitivity theorems for actions"" 327 $a""B.2. Mansfield's imprimitivity bimodule""""Appendix C. Function Spaces""; ""C.1. The spaces C[sub(c)](T,I??) for locally convex spaces I??""; ""C.2. Functions in multiplier algebras and multiplier bimodules""; ""Appendix. Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 850. 606 $aC*-algebras 606 $aCategories (Mathematics) 615 0$aC*-algebras. 615 0$aCategories (Mathematics) 676 $a510 s 676 $a512/.556 700 $aEchterhoff$b Siegfried$f1960-$01629105 701 $aEchterhoff$b Siegfried$f1960-$01629105 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910817241603321 996 $a-dynamical systems$93966624 997 $aUNINA