LEADER 01046cam0-22003491i-450- 001 990006688930403321 005 20080521141230.0 035 $a000668893 035 $aFED01000668893 035 $a(Aleph)000668893FED01 035 $a000668893 100 $a20010426d1980----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $aRicostruzione e industria$eper una interpretazione della politica industriale nel secondo dopoguerra 1943-1951$fGualberto Gualerni 210 $aMilano$cVita e Pensiero$d1980 215 $a229 p.$d19 cm 225 1 $aProblemi economici d'oggi$v19 676 $a338$v20$zita 700 1$aGualerni,$bGualberto$f<1930- >$0125197 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990006688930403321 952 $aCOLLEZ. 203 (19)$b5532$fFSPBC 952 $aXV C 176 (19)$b113499$fFGBC 952 $aH/2.14 GUA/80$b11137/I$fSES 959 $aFGBC 959 $aFSPBC 959 $aSES 996 $aRicostruzione e industria$9617162 997 $aUNINA LEADER 02536nam 2200601 450 001 9910817229003321 005 20170816143321.0 010 $a1-4704-0109-6 035 $a(CKB)3360000000464714 035 $a(EBL)3113929 035 $a(SSID)ssj0000889040 035 $a(PQKBManifestationID)11523065 035 $a(PQKBTitleCode)TC0000889040 035 $a(PQKBWorkID)10875134 035 $a(PQKB)10710311 035 $a(MiAaPQ)EBC3113929 035 $a(RPAM)3486302 035 $a(PPN)195414136 035 $a(EXLCZ)993360000000464714 100 $a20140909h19941994 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aLittlewood-Paley theory on spaces of homogeneous type and the classical function spaces /$fY. S. Han, E. T. Sawyer 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1994. 210 4$d©1994 215 $a1 online resource (138 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vNumber 530 300 $a"July 1994, Volume 110, Number 530 (fifth of 6 numbers)." 311 $a0-8218-2592-5 320 $aIncludes bibliographical references. 327 $a""Contents""; ""A?1. Introduction""; ""A?2. T[sup(a???1)][sub(N)] is a CalderA?łna???Zygmund operator""; ""A?3. The CalderA?łna???type reproducing formula on spaces of homogeneous type""; ""A?4. The Besov and Triebela???Lizorkin spaces on spaces of homogeneous type""; ""A?5. The T1 theorems for B[sup(I?±,q)][sub(p)] and F[sup(I?±,q)][sub(p)]""; ""A?6. Atomic decomposition of B[sup(I?±,q)][sub(p)] and F[sup(I?±,q)][sub(p)]""; ""A?7. Duality and interpolation of B[sup(I?±,q)][sub(p)] and F[sup(I?±,q)][sub(p)]""; ""References"" 410 0$aMemoirs of the American Mathematical Society ;$vNumber 530. 606 $aLittlewood-Paley theory 606 $aMultipliers (Mathematical analysis) 606 $aHardy spaces 606 $aFunction spaces 615 0$aLittlewood-Paley theory. 615 0$aMultipliers (Mathematical analysis) 615 0$aHardy spaces. 615 0$aFunction spaces. 676 $a515/.2433 700 $aHan$b Yongsheng$0505470 702 $aSawyer$b E. T$g(Eric T.),$f1951- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910817229003321 996 $aLittlewood-Paley theory on spaces of homogeneous type and the classical function spaces$93981933 997 $aUNINA