LEADER 02835nam 2200589 450 001 9910817126903321 005 20170918221728.0 010 $a1-4704-0691-8 035 $a(CKB)3360000000464465 035 $a(EBL)3113596 035 $a(SSID)ssj0000888913 035 $a(PQKBManifestationID)11523058 035 $a(PQKBTitleCode)TC0000888913 035 $a(PQKBWorkID)10881930 035 $a(PQKB)10398796 035 $a(MiAaPQ)EBC3113596 035 $a(RPAM)932819 035 $a(PPN)195411633 035 $a(EXLCZ)993360000000464465 100 $a19830223h19831983 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe existence of multi-dimensional shock fronts /$fAndrew Majda 210 1$aProvidence, R.I., USA :$cAmerican Mathematical Society,$d[1983] 210 4$dİ1983 215 $a1 online resource (101 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 281 300 $aDescription based upon print version of record. 311 $a0-8218-2281-0 320 $aBibliography: pages 93. 327 $a""TABLE OF CONTENTS""; ""A?0. INTRODUCTION""; ""A?1. STRUCTURAL CONDITIONS AND SHOCK FRONT INITIAL DATA: SOME PRELIMINARY FACTS""; ""A?2. THE MAP TO A FIXED DOMAIN, COMPATIBILITY CONDITIONS, AND AN APPROXIMATE SOLUTION""; ""2.A Reformulation by Mapping to a Fixed Domain""; ""2.B Derivation of the Higher Order Compatibility Conditions""; ""2.C Large Classes of Initial Data Satisfying the Compatibility Solution""; ""2.D Construction of an Approximate Solution""; ""A?3. THE ITERATION SCHEME""; ""A?4. CONVERGENCE OF THE ITERATION SCHEME"" 327 $a""A?4.A High Norm Boundedness a??? The Proof of Proposition 4.1""""A?4.B The Proof of Proposition 4.2""; ""A?5. THE MAIN LINEAR ESTIMATE""; ""APPENDIX. NONLINEAR CALCULUS INEQUALITIES ON SOBOLEV SPACES WEIGHTED WITH TIME""; ""A.A: A Summary of Standard Calculus Inequalities""; ""A.B: Nonlinear Commutator Estimates a??? The Proof of Lemma 5.5""; ""A.C: Estimates for Normal Derivatives a??? Lemma 5.3 and Lemmas 2.2, 2.3, and 3.2""; ""BIBLIOGRAPHY"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 281. 606 $aShock waves 606 $aDifferential equations, Hyperbolic$xNumerical solutions 606 $aConservation laws (Physics) 615 0$aShock waves. 615 0$aDifferential equations, Hyperbolic$xNumerical solutions. 615 0$aConservation laws (Physics) 676 $a510 s 676 $a531/.1133 700 $aMajda$b Andrew$f1949-$0477021 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910817126903321 996 $aThe existence of multi-dimensional shock fronts$93936691 997 $aUNINA