LEADER 05558nam 2200697Ia 450 001 9910816874403321 005 20200520144314.0 010 $a1-282-31679-6 010 $a9786612316791 010 $a0-470-75016-2 010 $a0-470-75017-0 035 $a(CKB)2550000000000253 035 $a(EBL)547171 035 $a(OCoLC)646788454 035 $a(SSID)ssj0000354132 035 $a(PQKBManifestationID)11251092 035 $a(PQKBTitleCode)TC0000354132 035 $a(PQKBWorkID)10312803 035 $a(PQKB)10710290 035 $a(MiAaPQ)EBC547171 035 $a(Au-PeEL)EBL547171 035 $a(CaPaEBR)ebr10342813 035 $a(CaONFJC)MIL231679 035 $a(EXLCZ)992550000000000253 100 $a20090728d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aElectrical characterization of organic electronic materials and devices /$fPeter Stallinga 205 $a1st ed. 210 $aHoboken, NJ $cJohn Wiley & Sons$d2009 215 $a1 online resource (317 p.) 300 $aDescription based upon print version of record. 311 $a0-470-75009-X 320 $aIncludes bibliographical references and index. 327 $aElectrical Characterization of Organic Electronic Materials and Devices; Contents; Preface; 1 General concepts; 1.1 Introduction; 1.2 Conduction mechanism; 1.3 Chemistry and the energy diagram; 1.3.1 Energy diagram of crystalline materials; 1.3.2 Energy diagram of amorphous materials; 1.4 Disordered materials and the Meyer-Neldel Rule; 1.5 Devices; 1.5.1 Resistor; 1.5.2 Schottky diode; 1.5.3 MIS diode and MIS tunnel diode; 1.5.4 Thin-film transistor; 1.6 Optoelectronics/photovoltaics; 2 Two-terminal devices: DC current; 2.1 Conductance; 2.1.1 Ohmic conduction; 2.1.2 Poole-Frenkel 327 $a2.1.3 Tunneling2.1.4 Space-charge-limited current; 2.1.5 Granular materials; grain boundaries; 2.2 DC current of a Schottky barrier; 2.2.1 High-current regime; 2.2.2 Displacement current; 2.3 DC measurements; 2.3.1 van der Pauw; 2.3.2 Hall effect; 3 Two-terminal devices: Admittance spectroscopy; 3.1 Admittance spectroscopy; 3.1.1 Low-frequency RCL bridge; 3.1.2 DC admittance; 3.2 Geometrical capacitance; 3.3 Equivalent circuits; 3.4 Resistor; SCLC; 3.5 Schottky diodes; 3.5.1 Schottky diode; nonuniform doping; 3.5.2 Schottky diode; adding an abundant deep acceptor level 327 $a3.5.3 Schottky diode minority levels; 3.5.4 Schottky barrier; temperature dependence; 3.6 MIS diodes; 3.6.1 MIS of doped semiconductors; 3.6.2 MIS with interface states; 3.6.3 MIS of low-mobility semiconductors; 3.7 MIS tunnel diode; 3.8 Noise measurements; 4 Two-terminal devices: Transient techniques; 4.1 Kinetics: Emission and capture of carriers; 4.1.1 Emission and capture in organic materials; 4.2 Current transient spectroscopy; 4.2.1 Example of an emission experiment; 4.2.2 Example of a capture experiment; 4.3 Thermally stimulated current; 4.4 Capacitance transient spectroscopy 327 $a4.4.1 Case study: Example of a capacitance transient measurement4.5 Deep-level transient spectroscopy; 4.6 Q-DLTS; 5 Time-of-flight; 5.1 Introduction; 5.2 Drift transient; 5.3 Diffusive transient; 5.4 Violating Einstein's Relation; 5.5 Multi-trap-and-release; 5.6 Anomalous transients; 5.7 High current (space charge) transients; 5.8 Summary of the ToF technique; 6 Thin-film transistors; 6.1 Field-effect transistors; 6.2 MOS-FET; 6.2.1 MOS-FET threshold voltage; 6.2.2 MOS-FET current; 6.2.3 Exact solution; 6.2.4 MOS-FET subthreshold current and subthreshold swing; 6.3 Introducing TFTs 327 $a6.4 Basic model6.4.1 Threshold voltage and subthreshold current; 6.5 Justification for the two-dimensional approach; 6.6 Ambipolar materials and devices; 6.7 Contact effects and other simple nonidealities; 6.7.1 Insulator leakage; 6.7.2 Contact resistance; 6.7.3 Contact barriers; 6.7.4 Grain boundaries; 6.7.5 Parallel conductance; 6.8 Metallic contacts in TFTs; 6.9 Normally-on TFTs; 6.9.1 Narrow gap semiconductors; 6.9.2 Thick TFTs; 6.9.3 Doped semiconductors and inversion-channel TFT; 6.9.4 Metal-insulator-metal TFT; 6.10 Effects of traps; 6.10.1 Traps and threshold voltage 327 $a6.10.2 Traps and output curves 330 $aThink like an electron Organic electronic materials have many applications and potential in low-cost electronics such as electronic barcodes and in light emitting devices, due to their easily tailored properties. While the chemical aspects and characterization have been widely studied, characterization of the electrical properties has been neglected, and classic textbook modeling has been applied. This is most striking in the analysis of thin-film transistors (TFTs) using thick "bulk" transistor (MOS-FET) descriptions. At first glance the TFTs appear to behave as regular MOS-FETs. 606 $aElectronics$xMaterials 606 $aOrganic electronics 606 $aOrganic semiconductors 606 $aElectronic apparatus and appliances$xMaterials 615 0$aElectronics$xMaterials. 615 0$aOrganic electronics. 615 0$aOrganic semiconductors. 615 0$aElectronic apparatus and appliances$xMaterials. 676 $a621.381 700 $aStallinga$b Peter$f1966-$01673344 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910816874403321 996 $aElectrical characterization of organic electronic materials and devices$94037379 997 $aUNINA