LEADER 02081nam 2200541 450 001 9910816786803321 005 20230125183945.0 010 $a1-60650-880-6 035 $a(CKB)4330000000017421 035 $a(OCoLC)939718526 035 $a(CaBNvSL)swl00405905 035 $a(MiAaPQ)EBC4389029 035 $a(Au-PeEL)EBL4389029 035 $a(CaPaEBR)ebr11152416 035 $a(OCoLC)939262338 035 $a(EXLCZ)994330000000017421 100 $a20151209d2016 fy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aAdvanced calculus $eusing multiple integrals /$fTunc Geveci 210 1$aNew York, [New York] (222 East 46th Street, New York, NY 10017) :$cMomentum Press,$d2016. 215 $a1 online resource (69 pages) $cillustrations 300 $aCo-published with Cognella Academic Publishing. 300 $aIncludes index. 327 $a1. Using double integrals over rectangles -- 327 $a2. Using double integrals over non-rectangular regions -- 327 $a3. Using double integrals in polar coordinates -- 327 $a4. Physical applications of double integrals -- Density and mass -- Moments and center of mass -- Probability -- 327 $a5. Understanding triple integrals -- 327 $a6. Using triple integrals in three dimensional polar coordinate systems -- Cylindrical coordinates -- Triple integrals in cylindrical coordinates -- Spherical coordinates -- Triple integrals in spherical coordinates -- 327 $a7. Understanding a change of variables in multiple integrals -- A plausibility argument for the theorem -- 327 $aIndex. 606 $aCalculus 606 $aMultiple integrals 608 $aLibros electronicos. 615 0$aCalculus. 615 0$aMultiple integrals. 676 $a515 700 $aGeveci$b Tunc.$0755794 801 0$bFINmELB 801 1$bFINmELB 906 $aBOOK 912 $a9910816786803321 996 $aAdvanced calculus$93941657 997 $aUNINA