LEADER 01707nam 2200481 450 001 9910816743603321 005 20180721105912.0 010 $a1-4704-4204-3 035 $a(CKB)4340000000245806 035 $a(MiAaPQ)EBC5291689 035 $a(RPAM)20076644 035 $a(PPN)224448013 035 $a(EXLCZ)994340000000245806 100 $a20180309h20172017 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 14$aThe planar cubic Cayley graphs /$fAgelos Georgakopoulos 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2017. 210 4$dİ2017 215 $a1 online resource (87 pages) $cillustrations 225 1 $aMemoirs of the American Mathematical Society,$x1947-6221 ;$vVolume 250, Number 1190 311 $a1-4704-2644-7 320 $aIncludes bibliographical references. 327 $aIntroductory material and basic facts -- The finite and 1-ended cubic planar Cayley graphs -- The planar multi-ended Cayley graphs with 2 generators -- The planar multi-ended Cayley graphs generated by 3 involutions -- Outlook -- Bibliography. 410 0$aMemoirs of the American Mathematical Society ;$vVolume 250, Number 1190. 606 $aCayley graphs 606 $aGraph connectivity 606 $aGraph theory 615 0$aCayley graphs. 615 0$aGraph connectivity. 615 0$aGraph theory. 676 $a511/.5 700 $aGeorgakopoulos$b Agelos$01714243 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910816743603321 996 $aThe planar cubic Cayley graphs$94107916 997 $aUNINA