LEADER 06402nam 2201573Ia 450 001 9910816709103321 005 20211204005453.0 010 $a1-283-57875-1 010 $a9786613891204 010 $a1-4008-4562-9 024 7 $a10.1515/9781400845620 035 $a(CKB)2670000000241519 035 $a(EBL)1011050 035 $a(OCoLC)812289802 035 $a(SSID)ssj0000711564 035 $a(PQKBManifestationID)11444694 035 $a(PQKBTitleCode)TC0000711564 035 $a(PQKBWorkID)10693541 035 $a(PQKB)10766157 035 $a(StDuBDS)EDZ0000515170 035 $a(DE-B1597)453861 035 $a(OCoLC)979910930 035 $a(DE-B1597)9781400845620 035 $a(Au-PeEL)EBL1011050 035 $a(CaPaEBR)ebr10597120 035 $a(CaONFJC)MIL389120 035 $z(PPN)199244332 035 $a(PPN)187960755 035 $a(FR-PaCSA)88838002 035 $a(MiAaPQ)EBC1011050 035 $a(EXLCZ)992670000000241519 100 $a20120501d2012 uy 0 101 0 $aeng 135 $aurnn#---|u||u 181 $ctxt 182 $cc 183 $acr 200 10$aMathematical tools for understanding infectious diseases dynamics /$fOdo Diekmann, Hans Heesterbeek, and Tom Britton 205 $aCourse Book 210 $aPrinceton $cPrinceton University Press$d2012 215 $a1 online resource (517 p.) 225 0 $aPrinceton series in theoretical and computational biology 300 $aDescription based upon print version of record. 311 $a0-691-15539-9 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tContents --$tPreface --$tPart I. The bare bones: Basic issues in the simplest context --$tPart II. Structured populations --$tPart III. Case studies on inference --$tPart IV. Elaborations --$tBibliography --$tIndex 330 $aMathematical modeling is critical to our understanding of how infectious diseases spread at the individual and population levels. This book gives readers the necessary skills to correctly formulate and analyze mathematical models in infectious disease epidemiology, and is the first treatment of the subject to integrate deterministic and stochastic models and methods. Mathematical Tools for Understanding Infectious Disease Dynamics fully explains how to translate biological assumptions into mathematics to construct useful and consistent models, and how to use the biological interpretation and mathematical reasoning to analyze these models. It shows how to relate models to data through statistical inference, and how to gain important insights into infectious disease dynamics by translating mathematical results back to biology. This comprehensive and accessible book also features numerous detailed exercises throughout; full elaborations to all exercises are provided. Covers the latest research in mathematical modeling of infectious disease epidemiology Integrates deterministic and stochastic approaches Teaches skills in model construction, analysis, inference, and interpretation Features numerous exercises and their detailed elaborations Motivated by real-world applications throughout 410 0$aPrinceton Series in Theoretical and Computational Biology 606 $aEpidemiology$xMathematical models$vCongresses 606 $aEpidemiology$xMathematical models 606 $aCommunicable diseases$xMathematical models 610 $aBayesian statistical inference. 610 $aICU model. 610 $aMarkov chain Monte Carlo method. 610 $aMarkov chain Monte Carlo methods. 610 $aReed?rost epidemic. 610 $aage structure. 610 $aasymptotic speed. 610 $abacterial infections. 610 $abiological interpretation. 610 $aclosed population. 610 $acompartmental epidemic systems. 610 $aconsistency conditions. 610 $acontact duration. 610 $ademography. 610 $adependence. 610 $adisease control. 610 $adisease outbreaks. 610 $adisease prevention. 610 $adisease transmission. 610 $aendemic. 610 $aepidemic models. 610 $aepidemic outbreak. 610 $aepidemic. 610 $aepidemiological models. 610 $aepidemiological parameters. 610 $aepidemiology. 610 $ageneral epidemic. 610 $agrowth rate. 610 $ahomogeneous community. 610 $ahospital infections. 610 $ahospital patients. 610 $ahost population growth. 610 $ahost. 610 $ahuman social behavior. 610 $ai-states. 610 $aindividual states. 610 $ainfected host. 610 $ainfection transmission. 610 $ainfection. 610 $ainfectious disease epidemiology. 610 $ainfectious disease. 610 $ainfectious diseases. 610 $ainfectious output. 610 $ainfective agent. 610 $ainfectivity. 610 $aintensive care units. 610 $aintrinsic growth rate. 610 $alarvae. 610 $amacroparasites. 610 $amathematical modeling. 610 $amathematical reasoning. 610 $amaximum likelihood estimation. 610 $amicroparasites. 610 $amodel construction. 610 $aoutbreak situations. 610 $aoutbreak. 610 $apair approximation. 610 $aparasite load. 610 $aparasite. 610 $apopulation models. 610 $apropagation speed. 610 $areproduction number. 610 $aseparable mixing. 610 $asexual activity. 610 $astochastic epidemic model. 610 $astructured population models. 610 $asusceptibility. 610 $avaccination. 615 0$aEpidemiology$xMathematical models 615 0$aEpidemiology$xMathematical models. 615 0$aCommunicable diseases$xMathematical models. 676 $a614.4 686 $aSCI008000$aMAT003000$aMED022090$2bisacsh 700 $aDiekmann$b O$058759 701 $aHeesterbeek$b Hans$f1960-$01631107 701 $aBritton$b Tom$057783 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910816709103321 996 $aMathematical tools for understanding infectious diseases dynamics$93969756 997 $aUNINA