LEADER 03939nam 22006495 450 001 9910816703603321 005 20240516014706.0 010 $a3-662-09947-0 024 7 $a10.1007/978-3-662-09947-6 035 $a(CKB)2660000000028496 035 $a(SSID)ssj0001298494 035 $a(PQKBManifestationID)11987079 035 $a(PQKBTitleCode)TC0001298494 035 $a(PQKBWorkID)11241294 035 $a(PQKB)10746608 035 $a(DE-He213)978-3-662-09947-6 035 $a(MiAaPQ)EBC3099070 035 $a(PPN)238043037 035 $a(EXLCZ)992660000000028496 100 $a20130101d1991 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aSolving Ordinary Differential Equations II $eStiff and Differential - Algebraic Problems /$fby Ernst Hairer, Gerhard Wanner 205 $a1st ed. 1991. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1991. 215 $a1 online resource (XV, 604 p.) 225 1 $aSpringer Series in Computational Mathematics,$x0179-3632 ;$v14 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-53775-9 311 $a3-662-09949-7 320 $aIncludes bibliographical references and indexes. 327 $aIV. Stiff Problems ? One-Step Methods -- V. Multistep Methods for Stiff Problems -- VI. Singular Perturbation Problems and Differential-Algebraic Equations -- Appendix Fortran Codes -- Driver for the Code RADAU5 -- Subroutine RADAU5 -- Subroutine SDIRK4 -- Subroutine ROS4 -- Subroutine RODAS -- Subroutine SEULEX -- Subroutine SODEX -- Symbol Index. 330 $a"Whatever regrets may be, we have done our best." (Sir Ernest Shackleton, turning back on 9 January 1909 at 88°23' South.) Brahms struggled for 20 years to write his first symphony. Compared to this, the 10 years we have been working on these two volumes may even appear short. This second volume treats stiff differential equations and differential alge­ braic equations. It contains three chapters: Chapter IV on one-step (Runge­ Kutta) methods for stiff problems, Chapter Von multistep methods for stiff problems, and Chapter VI on singular perturbation and differential-algebraic equations. Each chapter is divided into sections. Usually the first sections of a chapter are of an introductory nature, explain numerical phenomena and exhibit numerical results. Investigations of a more theoretieal nature are presented in the later sections of each chapter. As in Volume I, the formulas, theorems, tables and figures are numbered consecutively in each section and indicate, in addition, the section num­ ber. In cross references to other chapters the (latin) chapter number is put first. References to the bibliography are again by "author" plus "year" in parentheses. The bibliography again contains only those papers which are discussed in the text and is in no way meant to be complete. 410 0$aSpringer Series in Computational Mathematics,$x0179-3632 ;$v14 606 $aNumerical analysis 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aNumerical Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M14050 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 615 0$aNumerical analysis. 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 14$aNumerical Analysis. 615 24$aAnalysis. 676 $a518 700 $aHairer$b Ernst$4aut$4http://id.loc.gov/vocabulary/relators/aut$021071 702 $aWanner$b Gerhard$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910816703603321 996 $aSolving Ordinary Differential Equations II$93969705 997 $aUNINA